Decision Tree

CE-717 : Machine Learning
Sharif University of Technology

M. Soleymani
Fall 2016




Decision tree

» One of the most intuitive classifiers that is easy to
understand and construct

However, it also works very (very) well

» Application: Database mining



Example

No e Yes
» Attributes: ° G

A:age>40
C: chest pain ’ G ° ‘

S: smoking

P: physical test ‘ ° ‘ °
» Label: ‘ G ’ G

Heart disease (+), No heart disease (-)



Decision tree: structure

» Leaves (terminal nodes) represent target variable

Each leaf represents a class label

» Each internal node corresponds to denotes a test on an
attribute

Edges to children for each of the possible values of that
attribute
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Decision tree: learning

» Decision tree learning: construction of a decision tree
from training samples.

Decision trees used in data mining are usually classification
trees

» There are many specific decision-tree learning algorithms,
such as:

ID3
C4.5

» Approximates functions of usually discrete domain
The learned function is represented by a decision tree



Decision tree learning

» Learning an optimal decision tree is NP-Complete

Instead, we use a greedy search based on a heuristic

We cannot guarantee to return the globally-optimal decision tree.

» The most common strategy for DT learning is a greedy
top-down approach

chooses a variable at each step that best splits the set of items.

» Tree is constructed by splitting samples into subsets
based on an attribute value test in a recursive manner



How to construct basic decision tree?

» We prefer decisions leading to a simple, compact tree with few
nodes

» Which attribute at the root!?

Measure: how well the attributes splits the set into
homogeneous subsets (having same value of target)

Homogeneity of the target variable within the subsets.

» How to form descendant?

Descendant is created for each possible value of 4

Training examples are sorted to descendant nodes



Constructing a decision tree

Function FindTree(S,A) —  S:samples, A: attributes
If empty(A) or all labels of the samples in S are the same
status = leaf
class = most common class in the labels of S
else

status = internal
a «bestAttribute(S,A)
LeftNode = FindTree(S(a=1),A \ {a})

RightNode = FindTree(S(a=0),A \ {a})\
end \

end Recursive calls to create left and right subtrees
S(a=1) is the set of samples in S for which a=|

9 Top down, Greedy, No backtrack



Constructing a decision tree

Function FindTree(S,A) —> S:samples,A: attributes

If empty(A) or all labels of the samples in S are the same
status = leaf
class = most common class in the labels of S
else
status = internal
a «bestAttribute(S,A)
LeftNode = FindTree(S(a=1),A\{a}) .
RightNode = Tree is constructed by splitting samples into subsets based on
an attribute value test in a recursive manner

end

end * The recursion is completed when the subset at a node
has all the same value of the target variable

10 * or when splitting no longer adds value to the predictions.



ID3

ID3 (Examples, Target_Attribute, Attributes)
Create a root node for the tree
If all examples are positive, return the single-node tree Root, with label = +
If all examples are negative, return the single-node tree Root, with label = -
If number of predicting attributes is empty then
return Root, with label = most common value of the target attribute in the examples
else
A =The Attribute that best classifies examples.
Testing attribute for Root = A.
for each possible value, v;, of A
Add a new tree branch below Root, corresponding to the test A =v; .
Let Examples(v;) be the subset of examples that have the value for A
if Examples(v;) is empty then
below this new branch add a leaf node with label = most common target value in the examples
else below this new branch add subtree ID3 (Examples(v;), Target_Attribute, Attributes — {A})

return Root

11



Which attribute is the best?

A1=" [29+, 35-] A2="

[294,35—-]

t t f

[214,.9=] [8+, 30~=] [18+,33-] [13+,2—]
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Which attribute is the best?

» A variety of heuristics for picking a good test
Information gain: originated with ID3 (Quinlan,1979).
Gini impurity

» These metrics are applied to each candidate subset, and the
resulting values are combined (e.g., averaged) to provide a
measure of the quality of the split.

13



Entropy

HOO == ) P(x)logP(x)

» Entropy measures the uncertainty in a specific distribution

» Information theory:

H(X): expected number of bits needed to encode a randomly drawn
value of X (under most efficient code)

Most efficient code assigns —log P(X = i) bits to encode X =i

= expected number of bits to code one random X is H(X)

14



Entropy for a Boolean variable

1.0

HX) 92
(%) Entropy as a measure

of impurity

1
H(X) = —05log, > — 0.5log, - =1 H(X)=-1log,1—0log,0 =0
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Information Gain (IG)

Gain(S,A) = Hg(Y) — z 15| Hg (V)

S|
veValues(4)

» A:variable used to split samples
» Y:target variable

» S:samples

16



Information Gain: .

S:[9+4.5-]
E =0.940

‘ Humidiry \

High Normal

[3+.4-] [6+.1-]
E=0.985 E=0.592

17

(]

xample

S:[94.5-]
E=0.940

‘ Wind \

Weak Strong

[6+.2-] [34.3-]
E=0.511 E=1.00



Mutual Information

» The expected reduction in entropy of Y caused by knowing X:

I(X,Y)=H(Y)—H(Y|X)

— —Z.Z.P(X =Y =j)logP(X = OP(Y =)
i =]

P(X =i,Y =))

» Mutual information in decision tree:
H(Y):Entropy of Y (i.e., labels) before splitting samples
H(Y|X): Entropy of Y after splitting samples based on attribute X

It shows expectation of label entropy obtained in different splits (where
splits are formed based on the value of attribute X)
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Conditional entropy
H(Y|X) = —z z P(X =i,Y = j)log P(Y = j|X = i)
(L)
H(Y|X) = z_p(x =) z_—p(y = j1X = D) log P(Y = j|X = i)
l ]

_/
Y

probability of following i-th value for X l

Entropy of Y for samples with X =i
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Conditional entropy: example

» H(Y|Humidity)

= x H(Y|Humidity = High) + — x H(Y|Humidity = Normal)

» H(Y|Wind)

_ 1;94 x H(Y|Wind = Weak) + 1—64 X H(Y|Wind = Strong)

S: [9+4.,5-]
E=0.940

Humidiry

Normal

[3+.4-] [6+.1-]
E =0.985 E=0.592
Gain (S, Humidity )

940 - (7/14).985 - (7/14).592
151

20

S: [9+.5-]
E=0.940
Wind
Weak Strong
[64.2-] [3+.3-]
E=0.5811 E=1.00

Gain (5, Wind)

940 - (8/14).811 - (6/14)1.0
048



How to find the best attribute?

» Information gain as our criteria for a good split
attribute that maximizes information gain

» When a set of S samples have been sorted to a node,
choose j-th attribute for test in this node where:

j= argmax Gain(S,X;)

IEremaining atts.

= argmax Hq(Y)— Hs(Y|X;)

[Eremaining atts.

= argmin H;(Y|X;)

lEremaining atts.

21



Information Gain: .

xample

{D1.D2, ... D14}
[9+.5-]

Day Outlook Temperature Humidity Wind PlayTen

D1 Sunny Hot High  Weak No Outloak

D2  Sunny Hot High  Strong No

D3 Overcast Hot High Weak Yes

D4  Rain Mild High  Weak Yes S’ o .

D5 Rain Cool Normal Weak Yes A et =

D6  Rain Cool Normal Strong No \

D7 Overcast Cool Normal Strong Yes iD1.D2D8DODI1} {D3.D7.D12.D13} {D4.D5.D6.D10.D14}

D8  Sunny Mild High  Weak No [2+3-] [4+.0-] [3+.2-]

D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes ? ?

D11  Sunny Mild Normal Strong Yes /

D12 Overcast Mild High  Strong Yes

D13 Overcast Hot Normal Weak Yes /

D14 Rain Mild High  Strong No
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Which attribute should be tested here?

Ssunny = {D1.D2.D8.DO.D11}

Gain (Sgypyy . Humidity) = 970 — (3/5)0.0 — (2/5)0.0 = 970

Gain (Ssyppy . Temperature) = 070 — (2/5) 0.0 — (2/5) 1.0 — (1/5) 0.0 = .570
Gain (Ssunny. Wind) = 970 — (2/5) 1.0 — (3/5) 918 = 019



ID3 algorithm: Properties

» The algorithm
either reaches homogenous nodes
or runs out of attributes

» Guaranteed to find a tree consistent with any conflict-free
training set
ID3 hypothesis space of all DTs contains all discrete-valued functions

Conflict free training set: identical feature vectors always assigned the
same class

» But not necessarily find the simplest tree (containing minimum
number of nodes).

a greedy algorithm with locally-optimal decisions at each node (no
backtrack).

23



Decision tree learning:
Function approximation problem

» Problem Setting:
Set of possible instances X

Unknown target function f: X — Y (Y is discrete valued)
Set of function hypotheses H ={h|h: X > Y }

h is a DT where tree sorts each X to a leaf which assigns a label y

» Input:

Training examples {(x(Y, y(9)} of unknown target function f

» Output:
Hypothesis h € H that best approximates target function f

24



Decision tree hypothesis space

» Suppose attributes are Boolean
» Disjunction of conjunctions

» Which trees to show the following functions!?
y = xq1 and Xs
Y = X1 OT X4
y = (xq and x5) or(x, and —x,) !

25



Decision tree as a rule base

» Decision tree = a set of rules

» Disjunctions of conjunctions of test on the attribute values
Each path from root to a leaf = conjunction of attribute tests
All of the leafs with y = i are considered to find rule for y =i

26



How partition instance space?

» Decision tree

» Partition the instance space into axis-parallel regions, labeled with
class value

R, X7 R,
R /

"2

/
R, { ///:n; / / // / R

.

27 [Duda & Hurt ’s Book]



ID3 as a search in the space of trees

» ID3: heuristic search through J

space of DTs
Performs a simple to complex ﬁﬁ

hill-climbing search (begins with
empty tree)
prefer simpler hypotheses due to

using |G as a measure of selecting
attribute test

» 1G gives a bias for trees with
minimal size.
ID3 implements a search

(preference) bias instead of a
restriction bias.

28



Why prefer short hypotheses?

» Why is the optimal solution the smallest tree?

» Fewer short hypotheses than long ones

a short hypothesis that fits the data is less likely to be a
statistical coincidence

Lower variance of the smaller trees

Ockham (1285-1349) Principle of Parsimony:
“One should not increase, beyond what is necessary,
the number of entities required to explain anything.”

29



Over-fitting problem

» ID3 perfectly classifies training data (for consistent data)
It tries to memorize every training data

Poor decisions when very little data (it may not reflect reliable
trends)

Noise in the training data: the tree is erroneously fitting.

A node that “should” be pure but had a single (or few) exception(s)?

» For many (non relevant) attributes, the algorithm will
continue to split nodes

leads to over-fitting!

30



Over-fitting problem: an example

» Consider adding a (noisy) training example:

Outlook | Temp | Humidity | Wind | PlayTennis
Sunny Hot Normal | Strong No
Outlook
Sunny Overcast
Humidity Yes
High Normal
No Temp
ool ild ot
Yes Yes No
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Over-fitting in decision tree learning

» Hypothesis space H:decision trees

» Training (emprical) error of h € H : errotiyqin(h)

» Expected error of h € H: errory,y.(h)

» h overfits training data if there is a h’ € H such that

errortrain(h) < errortrain(h,)
errotiye(h) > errory.,.(h")

0.9

0.85

o8 _ /—-

/
075 F frmmmmmmmn

Accuracy
o
=]

0.65

0.6 On training data
On test data

1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 a0 70 80 90 100
32 Size of tree (number of nodes)



A question?
» How can it be made smaller and simpler?

Early stopping
When should a node be declared as a leaf?

If a leaf node is impure, how should the category label be assigned?

Pruning?

Build a full tree and then post-process it

33



Avoiding overfitting

1) Stop growing when the data split is not statistically
significant.

2)  Grow full tree and then prune it.

More successful than stop growing in practice.

3) How to select “best” tree:
Measure performance over separate validation set
MDL: minimize

size(tree) + size(missclassifications(tree))

34



Reduced-error pruning

» Split data into train and validation set
» Build tree using training set
» Do until further pruning is harmful:

Evaluate impact on validation set when pruning sub-tree
rooted at each node
Temporarily remove sub-tree rooted at node
Replace it with a leaf labeled with the current majority class at that node
Measure and record error on validation set
Greedily remove the one that most improves validation set
accuracy (if any).

Produces smallest version of the most accurate sub-tree.

35




C4.5

» C4.5 is an extension of ID3
Learn the decision tree from samples (allows overfitting)
Convert the tree into the equivalent set of rules

Prune (generalize) each rule by removing any precondition that
results in improving estimated accuracy

Sort the pruned rules by their estimated accuracy

consider them in sequence when classifying new instances

» Why converting the decision tree to rules before pruning?

Distinguishing among different contexts in which a decision node is
used

Removes the distinction between attribute tests that occur near the
root and those that occur near the leaves

36



Continuous attributes

» Tests on continuous variables as boolean ?
» Either use threshold to turn into binary or discretize

» Its possible to compute information gain for all possible
thresholds (there are a finite number of training samples)

» Harder if we wish to assign more than two values (can be
done recursively)

37



Top 8 are all based on various extensions of

Ranking classifiers decision trees

Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

MODEL ' ! 5 ' RMS MXE OPT-SEL
BST-DT ) ) . . . . 880 .896 . 917
RF ) ) ) ) ) . 851 .858 ) 808
BAG-DT ) ) ) ) . . .845 872 ) 809
BST-DT 3 : . : : : . .854 815 : O17*
RF . ) ) ) ) . 329 830 ) 890
BAG-DT ) ) ) ) . . 836 .852 ) .895
RF 3 ) . . ) ) . 836 TT76 ) .895
BAG-DT 3 . . . . . . .832 .791 . .804
SVM PLT 824 760 895 038 .898 913 831 836 B62 880
ANN 803 762 910 036 .802 899 811 821 B854 885
SVM 130 813 836%* 892 025 .8R2 011 814 .744 852 882
ANN PLT 815 748 910 036 .802 899 .783 .T85 846 875
ANN 130 803 836 908 024 BT6 891 TTT T18 842 884
BST-DT .834%* 816 .939 963 938 .929* .H08 .605 B28 851
KNN PLT THT 707 889 018 872 B72 742 764 815 837
KNN 756 728 889 018 872 872 .729 T18 810 830
KNN 150 755 .TH8 882 007 854 869 .7T38 .T06 209 844
BST-STMP PLT 724 651 876 908 853 845 716 .754 791 808
SVM 817 .804 .895 038 .899 913 .H14 A6T T81 810
BST-STMP 150 709 744 873 209 .835 840 605 646 T80 810
BST-STMP 741 684 876 008 .853 845 .304 .382 710 726
DT 130 648 654 818 B35 756 778 590 589 709 774

Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised Learning
Algorithms, ICML 2006]



Decision tree advantages

» Simple to understand and interpret

» Requires little data preparation and also can handle both
numerical and categorical data

» Time efficiency of learning decision tree classifier

Cab be used on large datasets

» Robust: Performs well even if its assumptions are
somewhat violated

39



Retference
» T. Mitchell,"Machine Learning”, 1998. [Chapter 3]
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