
Decision Tree
CE-717 : Machine Learning
Sharif University of Technology

M. Soleymani

Fall 2016

Decision tree

 One of the most intuitive classifiers that is easy to

understand and construct

 However, it also works very (very) well

 Application: Database mining

2

Example

3

 Attributes:

 A: age>40

 C: chest pain

 S: smoking

 P: physical test

 Label:

 Heart disease (+), No heart disease (-)

C

P

+

A

- P
S

- S - A

+-+-

Yes No

Decision tree: structure

 Leaves (terminal nodes) represent target variable

 Each leaf represents a class label

 Each internal node corresponds to denotes a test on an

attribute

 Edges to children for each of the possible values of that

attribute

4

5

Decision tree: learning

6

 Decision tree learning: construction of a decision tree
from training samples.

 Decision trees used in data mining are usually classification
trees

 There are many specific decision-tree learning algorithms,
such as:

 ID3

 C4.5

 Approximates functions of usually discrete domain

 The learned function is represented by a decision tree

Decision tree learning

7

 Learning an optimal decision tree is NP-Complete

 Instead, we use a greedy search based on a heuristic

 We cannot guarantee to return the globally-optimal decision tree.

 The most common strategy for DT learning is a greedy

top-down approach

 chooses a variable at each step that best splits the set of items.

 Tree is constructed by splitting samples into subsets

based on an attribute value test in a recursive manner

How to construct basic decision tree?

 We prefer decisions leading to a simple, compact tree with few

nodes

 Which attribute at the root?

 Measure: how well the attributes splits the set into

homogeneous subsets (having same value of target)

 Homogeneity of the target variable within the subsets.

 How to form descendant?

 Descendant is created for each possible value of 𝐴

 Training examples are sorted to descendant nodes

8

Constructing a decision tree

9

 Function FindTree(S,A)

 If empty(A) or all labels of the samples in S are the same

 status = leaf

 class = most common class in the labels of S

 else

 status = internal

 a ←bestAttribute(S,A)

 LeftNode = FindTree(S(a=1),A \ {a})

 RightNode = FindTree(S(a=0),A \ {a})

 end

 end Recursive calls to create left and right subtrees

S(a=1) is the set of samples in S for which a=1

Top down, Greedy, No backtrack

S: samples, A: attributes

Constructing a decision tree

10

 Function FindTree(S,A)

 If empty(A) or all labels of the samples in S are the same

 status = leaf

 class = most common class in the labels of S

 else

 status = internal

 a ←bestAttribute(S,A)

 LeftNode = FindTree(S(a=1),A \ {a})

 RightNode = FindTree(S(a=0),A \ {a})

 end

 end Recursive calls to create left and right subtrees

S(a=1) is the set of samples in S for which a=1

Top down, Greedy, No backtrack

S: samples, A: attributes

Tree is constructed by splitting samples into subsets based on

an attribute value test in a recursive manner

• The recursion is completed when the subset at a node

has all the same value of the target variable

• or when splitting no longer adds value to the predictions.

ID3

11

•ID3 (Examples,Target_Attribute,Attributes)

•Create a root node for the tree

•If all examples are positive, return the single-node tree Root, with label = +

•If all examples are negative, return the single-node tree Root, with label = -

•If number of predicting attributes is empty then

• return Root, with label = most common value of the target attribute in the examples

•else

•A = The Attribute that best classifies examples.

•Testing attribute for Root = A.

•for each possible value, 𝑣𝑖, of A

•Add a new tree branch below Root, corresponding to the test A =𝑣𝑖 .

•Let Examples(𝑣𝑖) be the subset of examples that have the value for A

•if Examples(𝑣𝑖) is empty then

• below this new branch add a leaf node with label = most common target value in the examples

•else below this new branch add subtree ID3 (Examples(𝒗𝒊),Target_Attribute,Attributes – {A})

•return Root

Which attribute is the best?

12

Which attribute is the best?

13

 A variety of heuristics for picking a good test

 Information gain: originated with ID3 (Quinlan,1979).

 Gini impurity

 …

 These metrics are applied to each candidate subset, and the

resulting values are combined (e.g., averaged) to provide a

measure of the quality of the split.

Entropy

𝐻 𝑋 = −
𝑥𝑖∈𝑋
𝑃 𝑥𝑖 log 𝑃(𝑥𝑖)

 Entropy measures the uncertainty in a specific distribution

 Information theory:

 𝐻 𝑋 : expected number of bits needed to encode a randomly drawn

value of 𝑋 (under most efficient code)

 Most efficient code assigns −log 𝑃(𝑋 = 𝑖) bits to encode 𝑋 = 𝑖

 ⇒ expected number of bits to code one random 𝑋 is 𝐻(𝑋)

14

Entropy for a Boolean variable

𝐻(𝑋)

𝑃(𝑋 = 1)

𝐻 𝑋 = −1 log2 1 − 0 log2 0 = 0𝐻 𝑋 = −0.5 log2
1

2
− 0.5 log2

1

2
= 1

15

Entropy as a measure

of impurity

Information Gain (IG)

 𝐴: variable used to split samples

 𝑌: target variable

 𝑆: samples

𝐺𝑎𝑖𝑛 𝑆, 𝐴 ≡ 𝐻𝑆 𝑌 −

𝑣∈Values(𝐴)

𝑆𝑣
𝑆
𝐻𝑆𝑣 𝑌

16

Information Gain: Example

17

Mutual Information

 The expected reduction in entropy of 𝑌 caused by knowing 𝑋:

𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

= −
𝑖

𝑗
𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 log

𝑃 𝑋 = 𝑖 𝑃(𝑌 = 𝑗)

𝑃 𝑋 = 𝑖, 𝑌 = 𝑗

 Mutual information in decision tree:

 𝐻 𝑌 : Entropy of 𝑌 (i.e., labels) before splitting samples

 𝐻 𝑌 𝑋 : Entropy of 𝑌 after splitting samples based on attribute 𝑋

 It shows expectation of label entropy obtained in different splits (where

splits are formed based on the value of attribute 𝑋)

18

Conditional entropy

𝐻 𝑌 𝑋 = −
𝑖

𝑗
𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 log 𝑃 𝑌 = 𝑗|𝑋 = 𝑖

19

𝐻 𝑌 𝑋 =
𝑖
𝑃 𝑋 = 𝑖

𝑗
−𝑃 𝑌 = 𝑗|𝑋 = 𝑖 log𝑃 𝑌 = 𝑗|𝑋 = 𝑖

probability of following i-th value for 𝑋

Entropy of 𝑌 for samples with 𝑋 = 𝑖

Conditional entropy: example

20

 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦

 =
7

14
× 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻𝑖𝑔ℎ +

7

14
× 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙

 𝐻 𝑌 𝑊𝑖𝑛𝑑

 =
8

14
× 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑊𝑒𝑎𝑘 +

6

14
× 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑆𝑡𝑟𝑜𝑛𝑔

How to find the best attribute?

 Information gain as our criteria for a good split

 attribute that maximizes information gain

 When a set of 𝑆 samples have been sorted to a node,

choose 𝑗-th attribute for test in this node where:

𝑗 = argmax
𝑖∈remaining atts.

𝐺𝑎𝑖𝑛 𝑆, 𝑋𝑖

 = argmax
𝑖∈remaining atts.

𝐻𝑆 𝑌 − 𝐻𝑆 𝑌|𝑋𝑖

 = argmin
𝑖∈remaining atts.

𝐻𝑆 𝑌|𝑋𝑖

21

Information Gain: Example

22

ID3 algorithm: Properties

23

 The algorithm
 either reaches homogenous nodes

 or runs out of attributes

 Guaranteed to find a tree consistent with any conflict-free
training set
 ID3 hypothesis space of all DTs contains all discrete-valued functions

 Conflict free training set: identical feature vectors always assigned the
same class

 But not necessarily find the simplest tree (containing minimum
number of nodes).
 a greedy algorithm with locally-optimal decisions at each node (no

backtrack).

Decision tree learning:

Function approximation problem

 Problem Setting:

 Set of possible instances 𝑋

 Unknown target function 𝑓: 𝑋 → 𝑌 (𝑌 is discrete valued)

 Set of function hypotheses 𝐻 = { ℎ | ℎ ∶ 𝑋 → 𝑌 }

 ℎ is a DT where tree sorts each 𝒙 to a leaf which assigns a label 𝑦

 Input:

 Training examples {(𝒙 𝑖 , 𝑦 𝑖)} of unknown target function 𝑓

 Output:

 Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓

24

Decision tree hypothesis space

 Suppose attributes are Boolean

 Disjunction of conjunctions

 Which trees to show the following functions?

 𝑦 = 𝑥1 𝑎𝑛𝑑 𝑥5
 𝑦 = 𝑥1 𝑜𝑟 𝑥4
 𝑦 = (𝑥1 𝑎𝑛𝑑 𝑥5) 𝑜𝑟(𝑥2 𝑎𝑛𝑑 ¬𝑥4) ?

25

Decision tree as a rule base

 Decision tree = a set of rules

 Disjunctions of conjunctions of test on the attribute values

 Each path from root to a leaf = conjunction of attribute tests

 All of the leafs with 𝑦 = 𝑖 are considered to find rule for 𝑦 = 𝑖

26

How partition instance space?

27

 Decision tree

 Partition the instance space into axis-parallel regions, labeled with

class value

[Duda & Hurt ’s Book]

ID3 as a search in the space of trees

 ID3: heuristic search through

space of DTs

 Performs a simple to complex

hill-climbing search (begins with

empty tree)

 prefer simpler hypotheses due to

using IG as a measure of selecting

attribute test

 IG gives a bias for trees with

minimal size.

 ID3 implements a search

(preference) bias instead of a

restriction bias.

28

Why prefer short hypotheses?

 Why is the optimal solution the smallest tree?

 Fewer short hypotheses than long ones

 a short hypothesis that fits the data is less likely to be a

statistical coincidence

 Lower variance of the smaller trees

29

Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary,

the number of entities required to explain anything.”

Over-fitting problem

 ID3 perfectly classifies training data (for consistent data)

 It tries to memorize every training data

 Poor decisions when very little data (it may not reflect reliable

trends)

 Noise in the training data: the tree is erroneously fitting.

 A node that “should” be pure but had a single (or few) exception(s)?

 For many (non relevant) attributes, the algorithm will

continue to split nodes

 leads to over-fitting!

30

Over-fitting problem: an example

 Consider adding a (noisy) training example:

31

PlayTennisWindHumidityTempOutlook

NoStrongNormalHotSunny

Temp

Yes Yes No

Cool Mild Hot

Over-fitting in decision tree learning

 Hypothesis space 𝐻: decision trees

 Training (emprical) error of ℎ ∈ 𝐻 : 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ)

 Expected error of ℎ ∈ 𝐻: 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ)

 ℎ overfits training data if there is a ℎ′ ∈ 𝐻 such that

 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛 ℎ < 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ′)

 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒 ℎ > 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ′)

32

A question?

33

 How can it be made smaller and simpler?

 Early stopping

 When should a node be declared as a leaf?

 If a leaf node is impure, how should the category label be assigned?

 Pruning?

 Build a full tree and then post-process it

Avoiding overfitting

1) Stop growing when the data split is not statistically

significant.

2) Grow full tree and then prune it.

 More successful than stop growing in practice.

3) How to select “best” tree:

 Measure performance over separate validation set

 MDL: minimize

 𝑠𝑖𝑧𝑒 𝑡𝑟𝑒𝑒 + 𝑠𝑖𝑧𝑒(𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑡𝑟𝑒𝑒))

34

Reduced-error pruning

 Split data into train and validation set

 Build tree using training set

 Do until further pruning is harmful:

 Evaluate impact on validation set when pruning sub-tree

rooted at each node

 Temporarily remove sub-tree rooted at node

 Replace it with a leaf labeled with the current majority class at that node

 Measure and record error on validation set

 Greedily remove the one that most improves validation set

accuracy (if any).

35

Produces smallest version of the most accurate sub-tree.

C4.5

36

 C4.5 is an extension of ID3

 Learn the decision tree from samples (allows overfitting)

 Convert the tree into the equivalent set of rules

 Prune (generalize) each rule by removing any precondition that

results in improving estimated accuracy

 Sort the pruned rules by their estimated accuracy

 consider them in sequence when classifying new instances

 Why converting the decision tree to rules before pruning?

 Distinguishing among different contexts in which a decision node is

used

 Removes the distinction between attribute tests that occur near the

root and those that occur near the leaves

Continuous attributes

 Tests on continuous variables as boolean ?

 Either use threshold to turn into binary or discretize

 Its possible to compute information gain for all possible

thresholds (there are a finite number of training samples)

 Harder if we wish to assign more than two values (can be

done recursively)

37

Ranking classifiers

[Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised Learning

Algorithms, ICML 2006]

Top 8 are all based on various extensions of

decision trees

38

Decision tree advantages

39

 Simple to understand and interpret

 Requires little data preparation and also can handle both

numerical and categorical data

 Time efficiency of learning decision tree classifier

 Cab be used on large datasets

 Robust: Performs well even if its assumptions are

somewhat violated

Reference

40

 T. Mitchell,“Machine Learning”, 1998. [Chapter 3]

