
Decision Tree
CE-717 : Machine Learning
Sharif University of Technology

M. Soleymani

Fall 2016

Decision tree

 One of the most intuitive classifiers that is easy to

understand and construct

 However, it also works very (very) well

 Application: Database mining

2

Example

3

 Attributes:

 A: age>40

 C: chest pain

 S: smoking

 P: physical test

 Label:

 Heart disease (+), No heart disease (-)

C

P

+

A

- P
S

- S - A

+-+-

Yes No

Decision tree: structure

 Leaves (terminal nodes) represent target variable

 Each leaf represents a class label

 Each internal node corresponds to denotes a test on an

attribute

 Edges to children for each of the possible values of that

attribute

4

5

Decision tree: learning

6

 Decision tree learning: construction of a decision tree
from training samples.

 Decision trees used in data mining are usually classification
trees

 There are many specific decision-tree learning algorithms,
such as:

 ID3

 C4.5

 Approximates functions of usually discrete domain

 The learned function is represented by a decision tree

Decision tree learning

7

 Learning an optimal decision tree is NP-Complete

 Instead, we use a greedy search based on a heuristic

 We cannot guarantee to return the globally-optimal decision tree.

 The most common strategy for DT learning is a greedy

top-down approach

 chooses a variable at each step that best splits the set of items.

 Tree is constructed by splitting samples into subsets

based on an attribute value test in a recursive manner

How to construct basic decision tree?

 We prefer decisions leading to a simple, compact tree with few

nodes

 Which attribute at the root?

 Measure: how well the attributes splits the set into

homogeneous subsets (having same value of target)

 Homogeneity of the target variable within the subsets.

 How to form descendant?

 Descendant is created for each possible value of 𝐴

 Training examples are sorted to descendant nodes

8

Constructing a decision tree

9

 Function FindTree(S,A)

 If empty(A) or all labels of the samples in S are the same

 status = leaf

 class = most common class in the labels of S

 else

 status = internal

 a ←bestAttribute(S,A)

 LeftNode = FindTree(S(a=1),A \ {a})

 RightNode = FindTree(S(a=0),A \ {a})

 end

 end Recursive calls to create left and right subtrees

S(a=1) is the set of samples in S for which a=1

Top down, Greedy, No backtrack

S: samples, A: attributes

Constructing a decision tree

10

 Function FindTree(S,A)

 If empty(A) or all labels of the samples in S are the same

 status = leaf

 class = most common class in the labels of S

 else

 status = internal

 a ←bestAttribute(S,A)

 LeftNode = FindTree(S(a=1),A \ {a})

 RightNode = FindTree(S(a=0),A \ {a})

 end

 end Recursive calls to create left and right subtrees

S(a=1) is the set of samples in S for which a=1

Top down, Greedy, No backtrack

S: samples, A: attributes

Tree is constructed by splitting samples into subsets based on

an attribute value test in a recursive manner

• The recursion is completed when the subset at a node

has all the same value of the target variable

• or when splitting no longer adds value to the predictions.

ID3

11

•ID3 (Examples,Target_Attribute,Attributes)

•Create a root node for the tree

•If all examples are positive, return the single-node tree Root, with label = +

•If all examples are negative, return the single-node tree Root, with label = -

•If number of predicting attributes is empty then

• return Root, with label = most common value of the target attribute in the examples

•else

•A = The Attribute that best classifies examples.

•Testing attribute for Root = A.

•for each possible value, 𝑣𝑖, of A

•Add a new tree branch below Root, corresponding to the test A =𝑣𝑖 .

•Let Examples(𝑣𝑖) be the subset of examples that have the value for A

•if Examples(𝑣𝑖) is empty then

• below this new branch add a leaf node with label = most common target value in the examples

•else below this new branch add subtree ID3 (Examples(𝒗𝒊),Target_Attribute,Attributes – {A})

•return Root

Which attribute is the best?

12

Which attribute is the best?

13

 A variety of heuristics for picking a good test

 Information gain: originated with ID3 (Quinlan,1979).

 Gini impurity

 …

 These metrics are applied to each candidate subset, and the

resulting values are combined (e.g., averaged) to provide a

measure of the quality of the split.

Entropy

𝐻 𝑋 = −
𝑥𝑖∈𝑋
𝑃 𝑥𝑖 log 𝑃(𝑥𝑖)

 Entropy measures the uncertainty in a specific distribution

 Information theory:

 𝐻 𝑋 : expected number of bits needed to encode a randomly drawn

value of 𝑋 (under most efficient code)

 Most efficient code assigns −log 𝑃(𝑋 = 𝑖) bits to encode 𝑋 = 𝑖

 ⇒ expected number of bits to code one random 𝑋 is 𝐻(𝑋)

14

Entropy for a Boolean variable

𝐻(𝑋)

𝑃(𝑋 = 1)

𝐻 𝑋 = −1 log2 1 − 0 log2 0 = 0𝐻 𝑋 = −0.5 log2
1

2
− 0.5 log2

1

2
= 1

15

Entropy as a measure

of impurity

Information Gain (IG)

 𝐴: variable used to split samples

 𝑌: target variable

 𝑆: samples

𝐺𝑎𝑖𝑛 𝑆, 𝐴 ≡ 𝐻𝑆 𝑌 −

𝑣∈Values(𝐴)

𝑆𝑣
𝑆
𝐻𝑆𝑣 𝑌

16

Information Gain: Example

17

Mutual Information

 The expected reduction in entropy of 𝑌 caused by knowing 𝑋:

𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

= −
𝑖

𝑗
𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 log

𝑃 𝑋 = 𝑖 𝑃(𝑌 = 𝑗)

𝑃 𝑋 = 𝑖, 𝑌 = 𝑗

 Mutual information in decision tree:

 𝐻 𝑌 : Entropy of 𝑌 (i.e., labels) before splitting samples

 𝐻 𝑌 𝑋 : Entropy of 𝑌 after splitting samples based on attribute 𝑋

 It shows expectation of label entropy obtained in different splits (where

splits are formed based on the value of attribute 𝑋)

18

Conditional entropy

𝐻 𝑌 𝑋 = −
𝑖

𝑗
𝑃 𝑋 = 𝑖, 𝑌 = 𝑗 log 𝑃 𝑌 = 𝑗|𝑋 = 𝑖

19

𝐻 𝑌 𝑋 =
𝑖
𝑃 𝑋 = 𝑖

𝑗
−𝑃 𝑌 = 𝑗|𝑋 = 𝑖 log𝑃 𝑌 = 𝑗|𝑋 = 𝑖

probability of following i-th value for 𝑋

Entropy of 𝑌 for samples with 𝑋 = 𝑖

Conditional entropy: example

20

 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦

 =
7

14
× 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻𝑖𝑔ℎ +

7

14
× 𝐻 𝑌 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝑁𝑜𝑟𝑚𝑎𝑙

 𝐻 𝑌 𝑊𝑖𝑛𝑑

 =
8

14
× 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑊𝑒𝑎𝑘 +

6

14
× 𝐻 𝑌 𝑊𝑖𝑛𝑑 = 𝑆𝑡𝑟𝑜𝑛𝑔

How to find the best attribute?

 Information gain as our criteria for a good split

 attribute that maximizes information gain

 When a set of 𝑆 samples have been sorted to a node,

choose 𝑗-th attribute for test in this node where:

𝑗 = argmax
𝑖∈remaining atts.

𝐺𝑎𝑖𝑛 𝑆, 𝑋𝑖

 = argmax
𝑖∈remaining atts.

𝐻𝑆 𝑌 − 𝐻𝑆 𝑌|𝑋𝑖

 = argmin
𝑖∈remaining atts.

𝐻𝑆 𝑌|𝑋𝑖

21

Information Gain: Example

22

ID3 algorithm: Properties

23

 The algorithm
 either reaches homogenous nodes

 or runs out of attributes

 Guaranteed to find a tree consistent with any conflict-free
training set
 ID3 hypothesis space of all DTs contains all discrete-valued functions

 Conflict free training set: identical feature vectors always assigned the
same class

 But not necessarily find the simplest tree (containing minimum
number of nodes).
 a greedy algorithm with locally-optimal decisions at each node (no

backtrack).

Decision tree learning:

Function approximation problem

 Problem Setting:

 Set of possible instances 𝑋

 Unknown target function 𝑓: 𝑋 → 𝑌 (𝑌 is discrete valued)

 Set of function hypotheses 𝐻 = { ℎ | ℎ ∶ 𝑋 → 𝑌 }

 ℎ is a DT where tree sorts each 𝒙 to a leaf which assigns a label 𝑦

 Input:

 Training examples {(𝒙 𝑖 , 𝑦 𝑖)} of unknown target function 𝑓

 Output:

 Hypothesis ℎ ∈ 𝐻 that best approximates target function 𝑓

24

Decision tree hypothesis space

 Suppose attributes are Boolean

 Disjunction of conjunctions

 Which trees to show the following functions?

 𝑦 = 𝑥1 𝑎𝑛𝑑 𝑥5
 𝑦 = 𝑥1 𝑜𝑟 𝑥4
 𝑦 = (𝑥1 𝑎𝑛𝑑 𝑥5) 𝑜𝑟(𝑥2 𝑎𝑛𝑑 ¬𝑥4) ?

25

Decision tree as a rule base

 Decision tree = a set of rules

 Disjunctions of conjunctions of test on the attribute values

 Each path from root to a leaf = conjunction of attribute tests

 All of the leafs with 𝑦 = 𝑖 are considered to find rule for 𝑦 = 𝑖

26

How partition instance space?

27

 Decision tree

 Partition the instance space into axis-parallel regions, labeled with

class value

[Duda & Hurt ’s Book]

ID3 as a search in the space of trees

 ID3: heuristic search through

space of DTs

 Performs a simple to complex

hill-climbing search (begins with

empty tree)

 prefer simpler hypotheses due to

using IG as a measure of selecting

attribute test

 IG gives a bias for trees with

minimal size.

 ID3 implements a search

(preference) bias instead of a

restriction bias.

28

Why prefer short hypotheses?

 Why is the optimal solution the smallest tree?

 Fewer short hypotheses than long ones

 a short hypothesis that fits the data is less likely to be a

statistical coincidence

 Lower variance of the smaller trees

29

Ockham (1285-1349) Principle of Parsimony:

“One should not increase, beyond what is necessary,

the number of entities required to explain anything.”

Over-fitting problem

 ID3 perfectly classifies training data (for consistent data)

 It tries to memorize every training data

 Poor decisions when very little data (it may not reflect reliable

trends)

 Noise in the training data: the tree is erroneously fitting.

 A node that “should” be pure but had a single (or few) exception(s)?

 For many (non relevant) attributes, the algorithm will

continue to split nodes

 leads to over-fitting!

30

Over-fitting problem: an example

 Consider adding a (noisy) training example:

31

PlayTennisWindHumidityTempOutlook

NoStrongNormalHotSunny

Temp

Yes Yes No

Cool Mild Hot

Over-fitting in decision tree learning

 Hypothesis space 𝐻: decision trees

 Training (emprical) error of ℎ ∈ 𝐻 : 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ)

 Expected error of ℎ ∈ 𝐻: 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ)

 ℎ overfits training data if there is a ℎ′ ∈ 𝐻 such that

 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛 ℎ < 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑎𝑖𝑛(ℎ′)

 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒 ℎ > 𝑒𝑟𝑟𝑜𝑟𝑡𝑟𝑢𝑒(ℎ′)

32

A question?

33

 How can it be made smaller and simpler?

 Early stopping

 When should a node be declared as a leaf?

 If a leaf node is impure, how should the category label be assigned?

 Pruning?

 Build a full tree and then post-process it

Avoiding overfitting

1) Stop growing when the data split is not statistically

significant.

2) Grow full tree and then prune it.

 More successful than stop growing in practice.

3) How to select “best” tree:

 Measure performance over separate validation set

 MDL: minimize

 𝑠𝑖𝑧𝑒 𝑡𝑟𝑒𝑒 + 𝑠𝑖𝑧𝑒(𝑚𝑖𝑠𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝑡𝑟𝑒𝑒))

34

Reduced-error pruning

 Split data into train and validation set

 Build tree using training set

 Do until further pruning is harmful:

 Evaluate impact on validation set when pruning sub-tree

rooted at each node

 Temporarily remove sub-tree rooted at node

 Replace it with a leaf labeled with the current majority class at that node

 Measure and record error on validation set

 Greedily remove the one that most improves validation set

accuracy (if any).

35

Produces smallest version of the most accurate sub-tree.

C4.5

36

 C4.5 is an extension of ID3

 Learn the decision tree from samples (allows overfitting)

 Convert the tree into the equivalent set of rules

 Prune (generalize) each rule by removing any precondition that

results in improving estimated accuracy

 Sort the pruned rules by their estimated accuracy

 consider them in sequence when classifying new instances

 Why converting the decision tree to rules before pruning?

 Distinguishing among different contexts in which a decision node is

used

 Removes the distinction between attribute tests that occur near the

root and those that occur near the leaves

Continuous attributes

 Tests on continuous variables as boolean ?

 Either use threshold to turn into binary or discretize

 Its possible to compute information gain for all possible

thresholds (there are a finite number of training samples)

 Harder if we wish to assign more than two values (can be

done recursively)

37

Ranking classifiers

[Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised Learning

Algorithms, ICML 2006]

Top 8 are all based on various extensions of

decision trees

38

Decision tree advantages

39

 Simple to understand and interpret

 Requires little data preparation and also can handle both

numerical and categorical data

 Time efficiency of learning decision tree classifier

 Cab be used on large datasets

 Robust: Performs well even if its assumptions are

somewhat violated

Reference

40

 T. Mitchell,“Machine Learning”, 1998. [Chapter 3]

