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Mixture Models: definition
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 Mixture models: Linear supper-position of mixtures or

components

𝑝 𝒙|𝜽 = 
𝑗=1

𝐾

𝑃(𝑀𝑗) 𝑝 𝒙 𝑀𝑗; 𝜽𝑗

  𝑗=1
𝐾 𝑃(𝑀𝑗) = 1

 𝑃(𝑀𝑗): the prior probability of 𝑗-th mixture

 𝜽𝑗 : the parameters of 𝑗-th mixture

 𝑝 𝒙 𝑀𝑗; 𝜽𝑗 : the probability of 𝒙 according to 𝑗-th mixture

 Framework for finding more complex probability distributions

 Goal: estimate 𝑝 𝒙 𝜃 E.g., Multi-modal density estimation



Gaussian Mixture Models (GMMs)
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 Gaussian Mixture Models: 𝑝 𝒙 𝑀𝑗; 𝜽𝑗 ~𝑁(𝝁𝑗 , 𝜮𝑗)

𝑝 𝒙 = 

𝑗=1

𝐾

𝜋𝑗𝒩(𝒙|𝝁𝑗 , 𝜮𝑗)

 Fitting the Gaussian mixture model

 Input: data points 𝒙 𝑖
𝑖=1

𝑁

 Goal: find the parameters of GMM (𝜋𝑗,𝝁𝑗 , 𝜮𝑗 , 𝑗 = 1, … , 𝐾)

0 ≤ 𝜋𝑗 ≤ 1

 

𝑗=1

𝐾

𝜋𝑗 = 1



GMM: 1-D Example

4

21 

42 

𝜋1 = 0.6

𝜋2 = 0.3

𝜋3 = 0.1

21 

12 

83 

2.03 



GMM: 2-D Example
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k = 3

𝝁1 = −2 3

Σ1 =
1 0.5
0.5 4
𝜋1 = 0.6

𝝁2 = 0 −4

Σ2 =
1 0
0 1

𝜋2 = 0.25

𝝁3 = 3 2

Σ3 =
3 1
1 1

𝜋3 = 0.15



GMM: 2-D Example
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k = 3

𝝁1 = −2 3

Σ1 =
1 0.5
0.5 4
𝜋1 = 0.6

𝝁2 = 0 −4

Σ2 =
1 0
0 1

𝜋2 = 0.25

𝝁3 = 3 2

Σ3 =
3 1
1 1

𝜋3 = 0.15

 GMM distribution



How to Fit GMM?
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 In order to maximize log likelihood:

ln 𝑝 𝑿 𝝅, 𝝁, 𝜮 = 

𝑖=1

𝑁

ln  

𝑗=1

𝑘

𝜋𝑗𝒩(𝒙|𝝁𝑗 , 𝜮𝑗)

 The sum over components appears inside the log and there is no closed
form solution for maximum likelihood.

𝜕 ln 𝑝 𝑿 𝝅, 𝝁, 𝜮

𝜕𝝁𝑘
= 𝟎

𝜕 ln 𝑝 𝑿 𝝅, 𝝁, 𝜮

𝜕𝜮𝑘
= 𝟎

𝜕 ln 𝑝 𝑿 𝝅, 𝝁, 𝜮 + 𝜆  𝑗=1
𝐾 𝜋𝑗 − 1

𝜕𝜋𝑘
= 0

𝑘 = 1,… , 𝐾

𝑿 = 𝒙(1), … , 𝒙(𝑁)



ML for GMM
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𝝁𝑘 =
1

𝑁𝑘
 
𝑖=1

𝑁 𝜋𝑘𝒩(𝒙
(𝑖)|𝝁𝑘 , 𝜮𝑘)

 𝑗=1
𝐾 𝜋𝑗𝒩(𝒙

(𝑖)|𝝁𝑗 , 𝜮𝑗)
𝒙(𝑖)

𝜮𝑘 =
1

𝑁𝑘
 
𝑖=1

𝑁 𝜋𝑘𝒩(𝒙
(𝑖)|𝝁𝑘 , 𝜮𝑘)

 𝑗=1
𝐾 𝜋𝑗𝒩(𝒙

(𝑖)|𝝁𝑗 , 𝜮𝑗)
(𝒙(𝑖)−𝝁𝑘

new)(𝒙 𝑖 −𝝁𝑘
new)𝑇

𝜋𝑘
new =
𝑁𝑘
𝑁

𝑁𝑘 = 

𝑖=1

𝑁
𝜋𝑘𝒩(𝒙

(𝑖)|𝝁𝑘 , 𝜮𝑘)

 𝑗=1
𝐾 𝜋𝑗𝒩(𝒙

(𝑖)|𝝁𝑗 , 𝜮𝑗)

𝜕 log 𝑨−1

𝜕𝑨−1
= 𝑨𝑇

𝜕𝒙𝑇𝑨𝒙

𝜕𝑨
= 𝒙𝒙𝑇



EM algorithm
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 An iterative algorithm in which each iteration is

guaranteed to improve the log-likelihood function

 General algorithm for finding ML estimation when the

data is incomplete (missing or unobserved data).

 EM find the maximum likelihood parameters in cases where

the models involve unobserved variables 𝑍 in addition to

unknown parameters 𝜽 and known data observations 𝑋.



Mixture models: discrete latent variables 
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𝑝(𝒙) = 𝑃 𝑧𝑗 = 1 𝑝 𝒙 𝑧𝑗 = 1 = 
𝑗=1

𝐾

𝜋𝑗 𝑝 𝒙 𝑧𝑗 = 1

 𝑧: latent or hidden variable

 specifies the mixture component

 𝑃 𝑧𝑗 = 1 = 𝜋𝑗
 0 ≤ 𝜋𝑗 ≤ 1

  𝑗=1
𝐾 𝜋𝑗 = 1



EM for GMM
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 Initialize 𝝁𝑘 , 𝜮𝑘 , 𝜋𝑘 𝑘 = 1,… , 𝐾

 E step: 𝑖 = 1,… , 𝑁, 𝑗 = 1,… , 𝐾

𝛾𝑗
𝑖 = 𝑃 𝑧𝑗

(𝑖)
= 1|𝒙 𝑖 , 𝜽𝑜𝑙𝑑 =

𝜋𝑗
𝑜𝑙𝑑𝒩(𝒙 𝑖 |𝝁𝑗

𝑜𝑙𝑑 , 𝜮𝑗
𝑜𝑙𝑑)

 𝑘=1
𝐾 𝜋𝑘

𝑜𝑙𝑑𝒩(𝒙(𝑖)|𝝁𝑘
𝑜𝑙𝑑, 𝜮𝑘

𝑜𝑙𝑑)

 M Step: 𝑗 = 1,… , 𝐾

𝝁𝑗
𝑛𝑒𝑤 =
 𝑖=1
𝑁 𝛾𝑗
𝑖𝒙(𝑖)

 𝑖=1
𝑁 𝛾𝑗
𝑖

𝜮𝑗
𝑛𝑒𝑤 =

1

 𝑖=1
𝑁 𝛾𝑗
𝑖
 
𝑖=1

𝑁

𝛾𝑗
𝑖(𝒙(𝑖)−𝝁𝑗

new)(𝒙 𝑖 −𝝁𝑗
new)𝑇

𝜋𝑗
new =
 𝑖=1
𝑁 𝛾𝑗
𝑖

𝑁

 Repeat E and M steps until convergence

𝜽 = [𝝅, 𝝁, 𝜮]

𝑧
(𝑖)
∈ {1,2, … ,𝐾} shows the mixture 

from which 𝑥(𝑖) is generated



EM & GMM: example

12 [Bishop]



EM & GMM: Example

13
[Bishop]



Local Minima
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Local Minima
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𝝁1 = −2 3

Σ1 =
1 0.5
0.5 4
𝜋1 = 0.6

𝝁2 = 0 −4

Σ2 =
1 0
0 1

𝜋2 = 0.25

𝝁3 = 3 2

Σ3 =
3 1
1 1

𝜋3 = 0.15

𝝁1 = 0.36 −4.09

Σ1 =
0.89 0.26
0.26 0.83
𝜋1 = 0.249

𝝁2 = 3.25 2.09

Σ2 =
2.23 1.08
1.09 1.41
𝜋2 = 0.146

𝝁3 = −2.11 3.36

Σ3 =
1.12 0.61
0.61 3.61
𝜋3 = 0.604

𝝁1 = 1.45 −1.81

Σ1 =
3.30 4.76
4.76 10.01
𝜋1 = 0.392

𝝁2 = −2.20 3.16

Σ2 =
1.30 1.10
1.10 2.80
𝜋2 = 0.429

𝝁3 = −1.88 3.74

Σ3 =
5.83 −0.82
−0.82 5.83
𝜋3 = 0.178

𝐶1

𝐶2

𝐶3

𝐶1

𝐶2

𝐶3



EM+GMM vs. k-means

16

 k-means:

 It is not probabilistic

 Has fewer parameters (and faster)

 Limited by the underlying assumption of spherical clusters

 can be extended to use covariance – get “hard EM” (ellipsoidal k-

means).

 Both EM and k-means depend on initialization

 getting stuck in local optima

 EM+GMM has more local minima

 Useful trick: first run k-means and then use its result to initialize EM.



EM algorithm: general

General algorithm for finding ML estimation when the data is 
incomplete (missing  or unobserved data).



Incomplete log likelihood
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 Complete log likelihood

 Maximizing likelihood (i.e., log 𝑃(𝑋, 𝑌|𝜽)) for labeled data is

straightforward

 Incomplete log likelihood

 With 𝑍 unobserved, our objective becomes the log of a

marginal probability log 𝑃(𝑋|𝜽) = log 𝑍 𝑃(𝑋, 𝑍|𝜽)

 This objective will not decouple and we use EM algorithm to solve it



EM Algorithm
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 Assumptions: 𝑋 (observed or known variables), 𝑍 (unobserved or latent

variables), 𝑋 come from a specific model with unknown parameters 𝜽

 If 𝑍 is relevant to 𝑋 (in any way), we can hope to extract information about it

from 𝑋 assuming a specific parametric model on the data.

 Steps:

 Initialization: Initialize the unknown parameters 𝜽

 Iterate the following steps, until convergence:

 Expectation step: Find the probability of unobserved variables given the current

parameters estimates and the observed data.

 Maximization step: from the observed data and the probability of the

unobserved data find the most likely parameters (a better estimate for the

parameters).



EM algorithm intuition
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 When learning with hidden variables, we are trying to solve

two problems at once:

 hypothesizing values for the unobserved variables in each data sample

 learning the parameters

 Each of these tasks is fairly easy when we have the solution to

the other.

 Given complete data, we have the statistics, and we can estimate

parameters using the MLE formulas.

 Conversely, computing probability of missing data given the parameters is

a probabilistic inference problem



EM algorithm

21



EM theoretical analysis 
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 What is the underlying theory for the use of the

expected complete log likelihood in the M-step?

𝐸
𝑃 𝑍 𝑋, 𝜽𝑜𝑙𝑑 log 𝑃 𝑋, 𝑍 𝜽

 Now, we show that maximizing this function also

maximizes the likelihood



EM theoretical foundation:

Objective function
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𝑍



Jensen’s inequality

24



EM theoretical foundation: 

Algorithm in general form

25



EM theoretical foundation:

E-step
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𝑄𝑡 = 𝑃(𝑍|𝑋, 𝜽𝑡) ⟹ 𝑄𝑡 = argmax
𝑄
𝐹 𝜽𝑡, 𝑄

Proof:

𝐹 𝜽𝑡, 𝑃(𝑍|𝑋, 𝜽𝑡) = 

𝑍

𝑃(𝑍|𝑋, 𝜽𝑡) log
𝑃(𝑋, 𝑍|𝜽𝑡)

𝑃(𝑍|𝑋, 𝜽𝑡)

= 

𝑍

𝑃(𝑍|𝑋, 𝜽𝑡) log 𝑃(𝑋|𝜽𝑡) = log𝑃(𝑋|𝜽𝑡) = ℓ 𝜽𝑡; 𝑋

 𝐹 𝜽,𝑄 is a lower bound on ℓ 𝜽; 𝑋 . Thus, 𝐹 𝜽𝑡, 𝑄 has been

maximized by setting 𝑄 to 𝑃 𝑍 𝑋, 𝜽𝑡 :

𝐹 𝜽𝑡, 𝑃(𝑍|𝑋, 𝜽𝑡) = ℓ 𝜽𝑡; 𝑋

⇒ 𝑃 𝑍 𝑋, 𝜽𝑡 = argmax
𝑄
𝐹 𝜽𝑡 , 𝑄



EM algorithm: illustration
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ℓ 𝜽; 𝑋

𝐹 𝜽, 𝑄𝑡

𝜽𝑡 𝜽𝑡+1



EM theoretical foundation:

M-step
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M-step can be equivalently viewed as maximizing the expected

complete log-likelihood:

𝜽𝑡+1 = argmax
𝜽
𝐹 𝜽, 𝑄𝑡 = argmax

𝜽
𝐸𝑄𝑡 log 𝑃(𝑋, 𝑍|𝜽)

Proof:

𝐹 𝜽, 𝑄𝑡 = 

𝑍

𝑄𝑡(𝑍) log
𝑃(𝑋, 𝑍|𝜽)

𝑄𝑡(𝑍)

= 

𝑍

𝑄𝑡(𝑍) log 𝑃(𝑋, 𝑍|𝜽) − 

𝑍

𝑄𝑡(𝑍) log𝑄𝑡(𝑍)

⇒ 𝐹 𝜽, 𝑄𝑡 = 𝐸𝑄𝑡 log 𝑃(𝑋, 𝑍|𝜽) + 𝐻(𝑄
𝑡 𝑍 )

Independent of 𝜽



EM iteration increases ℓ 𝜽; 𝑋
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ℓ 𝜽𝑡; 𝑋 = 𝐸𝑄𝑡 log 𝑃 𝑋, 𝑍 𝜽
𝑡 + 𝐻(𝑄𝑡 𝑍 )

ℓ 𝜽𝑡+1; 𝑋 ≥ 𝐸𝑄𝑡 log 𝑃 𝑋, 𝑍 𝜽
𝑡+1 +𝐻(𝑄𝑡 𝑍 )

ℓ 𝜽𝑡+1; 𝑋 − ℓ 𝜽𝑡; 𝑋 ≥ 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽
𝑡+1 − 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽

𝑡

Moreover, we have:

𝜽𝑡+1 = argmax
𝜽
𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽

⇒ 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽
𝑡+1 ≥ 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽

𝑡

⇒ ℓ 𝜽𝑡+1; 𝑋 − ℓ 𝜽𝑡; 𝑋 ≥ 0

EM is guaranteed to find a local maxima of the log likelihood



30



EM for GMM

M step: details
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𝑝 𝑋, 𝑍 𝜽 = 
𝑖=1

𝑁

𝑝(𝒙 𝑖 , 𝒛 𝑖 |𝜽) = 
𝑖=1

𝑁

𝑝(𝒙 𝑖 |𝒛 𝑖 , 𝜽)𝑝(𝒛 𝑖 |𝝅)

= 

𝑖=1

𝑁

 

𝑗=1

𝐾

𝒩 𝒙 𝑖 𝝁𝑗 , 𝜮𝑗
𝑧𝑗
(𝑖)

𝜋𝑗
𝑧𝑗
(𝑖)

log 𝑝 𝑋, 𝑍 𝜽 = 

𝑖=1

𝑁

 

𝑗=1

𝐾

𝑧𝑗
(𝑖)
log𝒩 𝒙 𝑖 𝝁𝑗 , 𝜮𝑗 + log 𝜋𝑗

𝐸
𝑍~𝑃 𝑍 𝑋, 𝜽old

log 𝑝 𝑋, 𝑍 𝜽 =

= 

𝑖=1

𝑁

 

𝑗=1

𝐾

𝐸
𝑃 𝑧𝑗
𝑖
|𝒙 𝑖 ,𝜽old

𝑧𝑗
𝑖
log𝒩 𝒙 𝑖 𝝁𝑗 , 𝜮𝑗 + log 𝜋𝑗

𝜽 = [𝝅, 𝝁, 𝜮]

𝜽𝑜𝑙𝑑 = [𝝅𝑜𝑙𝑑, 𝝁𝑜𝑙𝑑, 𝜮𝐨𝐥𝐝]

𝛾𝑗
𝑖



EM for GMM

M step: details
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𝜕𝑄 𝜽; 𝜽𝒐𝒍𝒅

𝜕𝝁𝑗
= 0 ⇒ 𝝁𝑗 =

 𝑖=1
𝑁 𝛾𝑗
𝑖𝒙(𝑖)

 𝑖=1
𝑁 𝛾𝑗
𝑖

𝜕𝑄 𝜽; 𝜽𝒐𝒍𝒅

𝜕𝜮𝑗
= 0 ⇒ 𝜮𝑗 =

1

 𝑖=1
𝑁 𝛾𝑗
𝑖
 
𝑖=1

𝑁

𝛾𝑗
𝑖(𝒙(𝑖)−𝝁𝑗 )(𝒙

𝑖 −𝝁𝑗 )
𝑇

𝜕 𝑄 𝜽; 𝜽𝒐𝒍𝒅 + 𝜆  𝑙=1
𝑘 𝜋𝑙 − 1

𝜕𝜋𝑗
= 0 ⇒ 𝜋𝑗 =

 𝑖=1
𝑁 𝛾𝑗
𝑖

𝑁
Lagrange multiplier due to 

the constraint  𝑗=1
𝑘 𝜋𝑗 = 1



EM algorithm: general
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 EM: general procedure for learning from partly observed

data

 Define:Q(𝜽; 𝜽old) =𝐸𝑍~𝑃(𝑍|𝑋,𝜽old) log 𝑝(𝑋, 𝑍|𝜽)

 =  𝑍𝑃(𝑍|𝑋, 𝜽
old) × log 𝑝(𝑋, 𝑍|𝜽)

Choose an initial setting  𝜽old = 𝜽0

Iterate until convergence:

E Step: Use 𝑋 and current 𝜽old to calculate 𝑃(𝑍|𝑋, 𝜽old)

M Step: 𝜽new = argmax
𝜽
Q(𝜽; 𝜽old)

𝜽old ← 𝜽new

expectation of the log-likelihood evaluated using 

the current estimate for the parameters 𝜽old



EM advantages and disadvantages 
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 Some good things about EM:

 no learning rate (step-size) parameter

 automatically enforces parameter constraints

 very fast for low dimensions

 each iteration guaranteed to improve likelihood

 Some bad things about EM:

 can be slower than some other iterative gradient-based

methods



Semi-supervised learning
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 Supervised Learning models require labeled data

 Supervised learning usually requires plenty of labeled data

 It is usually expensive to have a large set of labeled data

 Unlabeled data is often abundant with no or low cost

 Learning from both labeled and unlabeled data

 Labeled training data:ℒ = 𝒙 𝑛 , 𝑦 𝑛
𝑙=1

𝐿

 Unlabeled data available during training:𝒰 = 𝒙 𝑛
𝑛=𝐿+1

𝐿+𝑈



Semi-supervised learning: example

36 Zhu, Semi-Supervised Learning Tutorial, ICML, 2007. 



37 Zhu, Semi-Supervised Learning Tutorial, ICML, 2007. 



Semi-supervised generative model
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 Start from MLE 𝜽 = 𝝅, 𝝁, 𝜮 on ℒ = 𝒙 𝑛 , 𝑦 𝑛
𝑙=1

𝐿

 Repeat:

 E-step: compute 𝑝(𝑦 𝑛 |𝒙(𝑛), 𝜽) for 𝑛 = 𝐿 + 1 to 𝑛 = 𝐿 + 𝑈

 M-step: compute the parameters 𝜽 = 𝝅, 𝝁, 𝜮 considering

both labeled data and unlabeled data using the distribution

found on their labels in the E-step



Resource

39

 C. Bishop, “Pattern Recognition and Machine Learning”,

Chapter 9.


