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Mixture Models: definition
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 Mixture models: Linear supper-position of mixtures or

components

𝑝 𝒙|𝜽 = 
𝑗=1

𝐾

𝑃(𝑀𝑗) 𝑝 𝒙 𝑀𝑗; 𝜽𝑗

  𝑗=1
𝐾 𝑃(𝑀𝑗) = 1

 𝑃(𝑀𝑗): the prior probability of 𝑗-th mixture

 𝜽𝑗 : the parameters of 𝑗-th mixture

 𝑝 𝒙 𝑀𝑗; 𝜽𝑗 : the probability of 𝒙 according to 𝑗-th mixture

 Framework for finding more complex probability distributions

 Goal: estimate 𝑝 𝒙 𝜃 E.g., Multi-modal density estimation



Gaussian Mixture Models (GMMs)
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 Gaussian Mixture Models: 𝑝 𝒙 𝑀𝑗; 𝜽𝑗 ~𝑁(𝝁𝑗 , 𝜮𝑗)

𝑝 𝒙 = 

𝑗=1

𝐾

𝜋𝑗𝒩(𝒙|𝝁𝑗 , 𝜮𝑗)

 Fitting the Gaussian mixture model

 Input: data points 𝒙 𝑖
𝑖=1

𝑁

 Goal: find the parameters of GMM (𝜋𝑗,𝝁𝑗 , 𝜮𝑗 , 𝑗 = 1, … , 𝐾)

0 ≤ 𝜋𝑗 ≤ 1

 

𝑗=1

𝐾

𝜋𝑗 = 1



GMM: 1-D Example

4

21 

42 

𝜋1 = 0.6

𝜋2 = 0.3

𝜋3 = 0.1

21 

12 

83 

2.03 



GMM: 2-D Example
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k = 3

𝝁1 = −2 3

Σ1 =
1 0.5
0.5 4
𝜋1 = 0.6

𝝁2 = 0 −4

Σ2 =
1 0
0 1

𝜋2 = 0.25

𝝁3 = 3 2

Σ3 =
3 1
1 1

𝜋3 = 0.15



GMM: 2-D Example
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k = 3

𝝁1 = −2 3

Σ1 =
1 0.5
0.5 4
𝜋1 = 0.6

𝝁2 = 0 −4

Σ2 =
1 0
0 1

𝜋2 = 0.25

𝝁3 = 3 2

Σ3 =
3 1
1 1

𝜋3 = 0.15

 GMM distribution



How to Fit GMM?
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 In order to maximize log likelihood:

ln 𝑝 𝑿 𝝅, 𝝁, 𝜮 = 

𝑖=1

𝑁

ln  

𝑗=1

𝑘

𝜋𝑗𝒩(𝒙|𝝁𝑗 , 𝜮𝑗)

 The sum over components appears inside the log and there is no closed
form solution for maximum likelihood.

𝜕 ln 𝑝 𝑿 𝝅, 𝝁, 𝜮

𝜕𝝁𝑘
= 𝟎

𝜕 ln 𝑝 𝑿 𝝅, 𝝁, 𝜮

𝜕𝜮𝑘
= 𝟎

𝜕 ln 𝑝 𝑿 𝝅, 𝝁, 𝜮 + 𝜆  𝑗=1
𝐾 𝜋𝑗 − 1

𝜕𝜋𝑘
= 0

𝑘 = 1,… , 𝐾

𝑿 = 𝒙(1), … , 𝒙(𝑁)



ML for GMM
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𝝁𝑘 =
1

𝑁𝑘
 
𝑖=1

𝑁 𝜋𝑘𝒩(𝒙
(𝑖)|𝝁𝑘 , 𝜮𝑘)

 𝑗=1
𝐾 𝜋𝑗𝒩(𝒙

(𝑖)|𝝁𝑗 , 𝜮𝑗)
𝒙(𝑖)

𝜮𝑘 =
1

𝑁𝑘
 
𝑖=1

𝑁 𝜋𝑘𝒩(𝒙
(𝑖)|𝝁𝑘 , 𝜮𝑘)

 𝑗=1
𝐾 𝜋𝑗𝒩(𝒙

(𝑖)|𝝁𝑗 , 𝜮𝑗)
(𝒙(𝑖)−𝝁𝑘

new)(𝒙 𝑖 −𝝁𝑘
new)𝑇

𝜋𝑘
new =
𝑁𝑘
𝑁

𝑁𝑘 = 

𝑖=1

𝑁
𝜋𝑘𝒩(𝒙

(𝑖)|𝝁𝑘 , 𝜮𝑘)

 𝑗=1
𝐾 𝜋𝑗𝒩(𝒙

(𝑖)|𝝁𝑗 , 𝜮𝑗)

𝜕 log 𝑨−1

𝜕𝑨−1
= 𝑨𝑇

𝜕𝒙𝑇𝑨𝒙

𝜕𝑨
= 𝒙𝒙𝑇



EM algorithm
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 An iterative algorithm in which each iteration is

guaranteed to improve the log-likelihood function

 General algorithm for finding ML estimation when the

data is incomplete (missing or unobserved data).

 EM find the maximum likelihood parameters in cases where

the models involve unobserved variables 𝑍 in addition to

unknown parameters 𝜽 and known data observations 𝑋.



Mixture models: discrete latent variables 
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𝑝(𝒙) = 𝑃 𝑧𝑗 = 1 𝑝 𝒙 𝑧𝑗 = 1 = 
𝑗=1

𝐾

𝜋𝑗 𝑝 𝒙 𝑧𝑗 = 1

 𝑧: latent or hidden variable

 specifies the mixture component

 𝑃 𝑧𝑗 = 1 = 𝜋𝑗
 0 ≤ 𝜋𝑗 ≤ 1

  𝑗=1
𝐾 𝜋𝑗 = 1



EM for GMM
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 Initialize 𝝁𝑘 , 𝜮𝑘 , 𝜋𝑘 𝑘 = 1,… , 𝐾

 E step: 𝑖 = 1,… , 𝑁, 𝑗 = 1,… , 𝐾

𝛾𝑗
𝑖 = 𝑃 𝑧𝑗

(𝑖)
= 1|𝒙 𝑖 , 𝜽𝑜𝑙𝑑 =

𝜋𝑗
𝑜𝑙𝑑𝒩(𝒙 𝑖 |𝝁𝑗

𝑜𝑙𝑑 , 𝜮𝑗
𝑜𝑙𝑑)

 𝑘=1
𝐾 𝜋𝑘

𝑜𝑙𝑑𝒩(𝒙(𝑖)|𝝁𝑘
𝑜𝑙𝑑, 𝜮𝑘

𝑜𝑙𝑑)

 M Step: 𝑗 = 1,… , 𝐾

𝝁𝑗
𝑛𝑒𝑤 =
 𝑖=1
𝑁 𝛾𝑗
𝑖𝒙(𝑖)

 𝑖=1
𝑁 𝛾𝑗
𝑖

𝜮𝑗
𝑛𝑒𝑤 =

1

 𝑖=1
𝑁 𝛾𝑗
𝑖
 
𝑖=1

𝑁

𝛾𝑗
𝑖(𝒙(𝑖)−𝝁𝑗

new)(𝒙 𝑖 −𝝁𝑗
new)𝑇

𝜋𝑗
new =
 𝑖=1
𝑁 𝛾𝑗
𝑖

𝑁

 Repeat E and M steps until convergence

𝜽 = [𝝅, 𝝁, 𝜮]

𝑧
(𝑖)
∈ {1,2, … ,𝐾} shows the mixture 

from which 𝑥(𝑖) is generated



EM & GMM: example

12 [Bishop]



EM & GMM: Example
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[Bishop]



Local Minima
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Local Minima

15

𝝁1 = −2 3

Σ1 =
1 0.5
0.5 4
𝜋1 = 0.6

𝝁2 = 0 −4

Σ2 =
1 0
0 1

𝜋2 = 0.25

𝝁3 = 3 2

Σ3 =
3 1
1 1

𝜋3 = 0.15

𝝁1 = 0.36 −4.09

Σ1 =
0.89 0.26
0.26 0.83
𝜋1 = 0.249

𝝁2 = 3.25 2.09

Σ2 =
2.23 1.08
1.09 1.41
𝜋2 = 0.146

𝝁3 = −2.11 3.36

Σ3 =
1.12 0.61
0.61 3.61
𝜋3 = 0.604

𝝁1 = 1.45 −1.81

Σ1 =
3.30 4.76
4.76 10.01
𝜋1 = 0.392

𝝁2 = −2.20 3.16

Σ2 =
1.30 1.10
1.10 2.80
𝜋2 = 0.429

𝝁3 = −1.88 3.74

Σ3 =
5.83 −0.82
−0.82 5.83
𝜋3 = 0.178

𝐶1

𝐶2

𝐶3

𝐶1

𝐶2

𝐶3



EM+GMM vs. k-means
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 k-means:

 It is not probabilistic

 Has fewer parameters (and faster)

 Limited by the underlying assumption of spherical clusters

 can be extended to use covariance – get “hard EM” (ellipsoidal k-

means).

 Both EM and k-means depend on initialization

 getting stuck in local optima

 EM+GMM has more local minima

 Useful trick: first run k-means and then use its result to initialize EM.



EM algorithm: general

General algorithm for finding ML estimation when the data is 
incomplete (missing  or unobserved data).



Incomplete log likelihood
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 Complete log likelihood

 Maximizing likelihood (i.e., log 𝑃(𝑋, 𝑌|𝜽)) for labeled data is

straightforward

 Incomplete log likelihood

 With 𝑍 unobserved, our objective becomes the log of a

marginal probability log 𝑃(𝑋|𝜽) = log 𝑍 𝑃(𝑋, 𝑍|𝜽)

 This objective will not decouple and we use EM algorithm to solve it



EM Algorithm
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 Assumptions: 𝑋 (observed or known variables), 𝑍 (unobserved or latent

variables), 𝑋 come from a specific model with unknown parameters 𝜽

 If 𝑍 is relevant to 𝑋 (in any way), we can hope to extract information about it

from 𝑋 assuming a specific parametric model on the data.

 Steps:

 Initialization: Initialize the unknown parameters 𝜽

 Iterate the following steps, until convergence:

 Expectation step: Find the probability of unobserved variables given the current

parameters estimates and the observed data.

 Maximization step: from the observed data and the probability of the

unobserved data find the most likely parameters (a better estimate for the

parameters).



EM algorithm intuition
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 When learning with hidden variables, we are trying to solve

two problems at once:

 hypothesizing values for the unobserved variables in each data sample

 learning the parameters

 Each of these tasks is fairly easy when we have the solution to

the other.

 Given complete data, we have the statistics, and we can estimate

parameters using the MLE formulas.

 Conversely, computing probability of missing data given the parameters is

a probabilistic inference problem



EM algorithm

21



EM theoretical analysis 
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 What is the underlying theory for the use of the

expected complete log likelihood in the M-step?

𝐸
𝑃 𝑍 𝑋, 𝜽𝑜𝑙𝑑 log 𝑃 𝑋, 𝑍 𝜽

 Now, we show that maximizing this function also

maximizes the likelihood



EM theoretical foundation:

Objective function
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𝑍



Jensen’s inequality
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EM theoretical foundation: 

Algorithm in general form

25



EM theoretical foundation:

E-step
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𝑄𝑡 = 𝑃(𝑍|𝑋, 𝜽𝑡) ⟹ 𝑄𝑡 = argmax
𝑄
𝐹 𝜽𝑡, 𝑄

Proof:

𝐹 𝜽𝑡, 𝑃(𝑍|𝑋, 𝜽𝑡) = 

𝑍

𝑃(𝑍|𝑋, 𝜽𝑡) log
𝑃(𝑋, 𝑍|𝜽𝑡)

𝑃(𝑍|𝑋, 𝜽𝑡)

= 

𝑍

𝑃(𝑍|𝑋, 𝜽𝑡) log 𝑃(𝑋|𝜽𝑡) = log𝑃(𝑋|𝜽𝑡) = ℓ 𝜽𝑡; 𝑋

 𝐹 𝜽,𝑄 is a lower bound on ℓ 𝜽; 𝑋 . Thus, 𝐹 𝜽𝑡, 𝑄 has been

maximized by setting 𝑄 to 𝑃 𝑍 𝑋, 𝜽𝑡 :

𝐹 𝜽𝑡, 𝑃(𝑍|𝑋, 𝜽𝑡) = ℓ 𝜽𝑡; 𝑋

⇒ 𝑃 𝑍 𝑋, 𝜽𝑡 = argmax
𝑄
𝐹 𝜽𝑡 , 𝑄



EM algorithm: illustration
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ℓ 𝜽; 𝑋

𝐹 𝜽, 𝑄𝑡

𝜽𝑡 𝜽𝑡+1



EM theoretical foundation:

M-step
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M-step can be equivalently viewed as maximizing the expected

complete log-likelihood:

𝜽𝑡+1 = argmax
𝜽
𝐹 𝜽, 𝑄𝑡 = argmax

𝜽
𝐸𝑄𝑡 log 𝑃(𝑋, 𝑍|𝜽)

Proof:

𝐹 𝜽, 𝑄𝑡 = 

𝑍

𝑄𝑡(𝑍) log
𝑃(𝑋, 𝑍|𝜽)

𝑄𝑡(𝑍)

= 

𝑍

𝑄𝑡(𝑍) log 𝑃(𝑋, 𝑍|𝜽) − 

𝑍

𝑄𝑡(𝑍) log𝑄𝑡(𝑍)

⇒ 𝐹 𝜽, 𝑄𝑡 = 𝐸𝑄𝑡 log 𝑃(𝑋, 𝑍|𝜽) + 𝐻(𝑄
𝑡 𝑍 )

Independent of 𝜽



EM iteration increases ℓ 𝜽; 𝑋
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ℓ 𝜽𝑡; 𝑋 = 𝐸𝑄𝑡 log 𝑃 𝑋, 𝑍 𝜽
𝑡 + 𝐻(𝑄𝑡 𝑍 )

ℓ 𝜽𝑡+1; 𝑋 ≥ 𝐸𝑄𝑡 log 𝑃 𝑋, 𝑍 𝜽
𝑡+1 +𝐻(𝑄𝑡 𝑍 )

ℓ 𝜽𝑡+1; 𝑋 − ℓ 𝜽𝑡; 𝑋 ≥ 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽
𝑡+1 − 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽

𝑡

Moreover, we have:

𝜽𝑡+1 = argmax
𝜽
𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽

⇒ 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽
𝑡+1 ≥ 𝐸𝑄𝑡 log𝑃 𝑋, 𝑍 𝜽

𝑡

⇒ ℓ 𝜽𝑡+1; 𝑋 − ℓ 𝜽𝑡; 𝑋 ≥ 0

EM is guaranteed to find a local maxima of the log likelihood



30



EM for GMM

M step: details
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𝑝 𝑋, 𝑍 𝜽 = 
𝑖=1

𝑁

𝑝(𝒙 𝑖 , 𝒛 𝑖 |𝜽) = 
𝑖=1

𝑁

𝑝(𝒙 𝑖 |𝒛 𝑖 , 𝜽)𝑝(𝒛 𝑖 |𝝅)

= 

𝑖=1

𝑁

 

𝑗=1

𝐾

𝒩 𝒙 𝑖 𝝁𝑗 , 𝜮𝑗
𝑧𝑗
(𝑖)

𝜋𝑗
𝑧𝑗
(𝑖)

log 𝑝 𝑋, 𝑍 𝜽 = 

𝑖=1

𝑁

 

𝑗=1

𝐾

𝑧𝑗
(𝑖)
log𝒩 𝒙 𝑖 𝝁𝑗 , 𝜮𝑗 + log 𝜋𝑗

𝐸
𝑍~𝑃 𝑍 𝑋, 𝜽old

log 𝑝 𝑋, 𝑍 𝜽 =

= 

𝑖=1

𝑁

 

𝑗=1

𝐾

𝐸
𝑃 𝑧𝑗
𝑖
|𝒙 𝑖 ,𝜽old

𝑧𝑗
𝑖
log𝒩 𝒙 𝑖 𝝁𝑗 , 𝜮𝑗 + log 𝜋𝑗

𝜽 = [𝝅, 𝝁, 𝜮]

𝜽𝑜𝑙𝑑 = [𝝅𝑜𝑙𝑑, 𝝁𝑜𝑙𝑑, 𝜮𝐨𝐥𝐝]

𝛾𝑗
𝑖



EM for GMM

M step: details
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𝜕𝑄 𝜽; 𝜽𝒐𝒍𝒅

𝜕𝝁𝑗
= 0 ⇒ 𝝁𝑗 =

 𝑖=1
𝑁 𝛾𝑗
𝑖𝒙(𝑖)

 𝑖=1
𝑁 𝛾𝑗
𝑖

𝜕𝑄 𝜽; 𝜽𝒐𝒍𝒅

𝜕𝜮𝑗
= 0 ⇒ 𝜮𝑗 =

1

 𝑖=1
𝑁 𝛾𝑗
𝑖
 
𝑖=1

𝑁

𝛾𝑗
𝑖(𝒙(𝑖)−𝝁𝑗 )(𝒙

𝑖 −𝝁𝑗 )
𝑇

𝜕 𝑄 𝜽; 𝜽𝒐𝒍𝒅 + 𝜆  𝑙=1
𝑘 𝜋𝑙 − 1

𝜕𝜋𝑗
= 0 ⇒ 𝜋𝑗 =

 𝑖=1
𝑁 𝛾𝑗
𝑖

𝑁
Lagrange multiplier due to 

the constraint  𝑗=1
𝑘 𝜋𝑗 = 1



EM algorithm: general
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 EM: general procedure for learning from partly observed

data

 Define:Q(𝜽; 𝜽old) =𝐸𝑍~𝑃(𝑍|𝑋,𝜽old) log 𝑝(𝑋, 𝑍|𝜽)

 =  𝑍𝑃(𝑍|𝑋, 𝜽
old) × log 𝑝(𝑋, 𝑍|𝜽)

Choose an initial setting  𝜽old = 𝜽0

Iterate until convergence:

E Step: Use 𝑋 and current 𝜽old to calculate 𝑃(𝑍|𝑋, 𝜽old)

M Step: 𝜽new = argmax
𝜽
Q(𝜽; 𝜽old)

𝜽old ← 𝜽new

expectation of the log-likelihood evaluated using 

the current estimate for the parameters 𝜽old



EM advantages and disadvantages 
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 Some good things about EM:

 no learning rate (step-size) parameter

 automatically enforces parameter constraints

 very fast for low dimensions

 each iteration guaranteed to improve likelihood

 Some bad things about EM:

 can be slower than some other iterative gradient-based

methods



Semi-supervised learning
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 Supervised Learning models require labeled data

 Supervised learning usually requires plenty of labeled data

 It is usually expensive to have a large set of labeled data

 Unlabeled data is often abundant with no or low cost

 Learning from both labeled and unlabeled data

 Labeled training data:ℒ = 𝒙 𝑛 , 𝑦 𝑛
𝑙=1

𝐿

 Unlabeled data available during training:𝒰 = 𝒙 𝑛
𝑛=𝐿+1

𝐿+𝑈



Semi-supervised learning: example

36 Zhu, Semi-Supervised Learning Tutorial, ICML, 2007. 



37 Zhu, Semi-Supervised Learning Tutorial, ICML, 2007. 



Semi-supervised generative model
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 Start from MLE 𝜽 = 𝝅, 𝝁, 𝜮 on ℒ = 𝒙 𝑛 , 𝑦 𝑛
𝑙=1

𝐿

 Repeat:

 E-step: compute 𝑝(𝑦 𝑛 |𝒙(𝑛), 𝜽) for 𝑛 = 𝐿 + 1 to 𝑛 = 𝐿 + 𝑈

 M-step: compute the parameters 𝜽 = 𝝅, 𝝁, 𝜮 considering

both labeled data and unlabeled data using the distribution

found on their labels in the E-step



Resource

39

 C. Bishop, “Pattern Recognition and Machine Learning”,

Chapter 9.


