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 Non-parametric approach

 Unsupervised: Non-parametric density estimation

 Parzen Windows

 Kn-Nearest Neighbor Density Estimation

 Supervised: Instance-based learners

 Classification

 kNN classification

 Weighted (or kernel) kNN

 Regression

 kNN regression

 Locally linear weighted regression



Introduction
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 Estimation of arbitrary density functions

 Parametric density functions cannot usually fit the densities we

encounter in practical problems.

 e.g., parametric densities are unimodal.

 Non-parametric methods don't assume that the model (from) of

underlying densities is known in advance

 Non-parametric methods (for classification) can be

categorized into

 Generative

 Estimate 𝑝(𝒙|𝒞𝑖) from 𝒟𝑖 using non-parametric density estimation

 Discriminative

 Estimate 𝑝(𝒞𝑖|𝒙) from 𝒟



Parametric vs. nonparametric methods
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 Parametric methods need to find parameters from data and

then use the inferred parameters to decide on new data points

 Learning: finding parameters from data

 Nonparametric methods

 Training examples are explicitly used

 Training phase is not required

 Both supervised and unsupervised learning methods can be

categorized into parametric and non-parametric methods.



Histogram approximation idea
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 Histogram approximation of an unknown pdf

 𝑃(𝑏𝑙) ≈ 𝑘𝑛(𝑏𝑙)/𝑛 𝑙 = 1,… , 𝐿

 𝑘𝑛(𝑏𝑙): number of samples (among n ones) lied in the bin 𝑏𝑙

 The corresponding estimated pdf:

  𝑝 𝑥 =
𝑃(𝑏𝑙)

ℎ
𝑥 −  𝑥𝑏𝑙 ≤

ℎ

2 ℎ

𝑘𝑛

Mid-point of 

the bin 𝑏𝑙



Non-parametric density estimation
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 Probability of falling in a region ℛ:

 𝑃 =  ℛ 𝑝 𝒙′ 𝑑𝒙′ (smoothed version of 𝑝 𝒙 )

 𝒟 = 𝒙 𝑖
𝑖=1

𝑛
: a set of samples drawn i.i.d. according to 𝑝 𝒙

 The probability that 𝑘 of the 𝑛 samples fall in ℛ:

 𝑃𝑘 =
𝑛
𝑘

𝑃𝑘 1 − 𝑃 𝑛−𝑘

 𝐸 𝑘 = 𝑛𝑃

 This binomial distribution peaks sharply about the mean:

 𝑘 ≈ 𝑛𝑃 ⇒
𝑘

𝑛
as an estimate for 𝑃

 More accurate for larger 𝑛



Non-parametric density estimation
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 We can estimate smoothed 𝑝 𝒙 by estimating 𝑃:

 Assumptions: 𝑝 𝒙 is continuous and the region ℛ enclosing 𝒙
is so small that 𝑝 is near constant in it:

𝑃 =  
ℛ

𝑝 𝒙′ 𝑑𝒙′ = 𝑝 𝒙 × 𝑉

𝑉 = 𝑉𝑜𝑙 ℛ

𝒙 ∈ ℛ ⇒ 𝑝 𝒙 =
𝑃

𝑉
≈
𝑘/𝑛

𝑉

 Let 𝑉 approach zero if we want to find 𝑝 𝒙 instead of the
averaged version.



Necessary conditions for converge
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 𝑝𝑛 𝒙 is the estimate of 𝑝 𝒙 using 𝑛 samples:

 𝑉𝑛: the volume of region around 𝒙

 𝑘𝑛: the number of samples falling in the region

𝑝𝑛 𝒙 =
𝑘𝑛/𝑛

𝑉𝑛

 Necessary conditions for converge of 𝑝𝑛 𝒙 to 𝑝(𝒙):

 lim
𝑛→∞

𝑉𝑛 = 0

 lim
𝑛→∞

𝑘𝑛 = ∞

 lim
𝑛→∞

𝑘𝑛/𝑛 = 0



Non-parametric density estimation: Main 

approaches
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 Two approaches of satisfying conditions:

 k-nearest neighbor density estimator: fix K and determine the

value ofV from the data

 Volume grows until it contains K neighbors of 𝒙

 Kernel density estimator (Parzen window): fix V and determine

K from the data

 Number of points falling inside the volume can vary from point to

point



Parzen window
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 Extension of histogram idea:

 Hyper-cubes with length of side ℎ (i.e., volume ℎ𝑑) are located on the

samples

 Hypercube as a simple window function:

𝜑 𝒖 =  1 ( 𝑢1 ≤
1

2
∧ …∧ 𝑢𝑑 ≤

1

2
)

0 𝑜.𝑤.

 𝑝𝑛 𝒙 =
𝑘𝑛

𝑛𝑉𝑛
=

1

𝑛𝑉𝑛
 𝑖=1
𝑛 𝜑

𝒙−𝒙(𝑖)

ℎ𝑛

 𝑘𝑛 =  𝑖=1
𝑛 𝜑

𝒙−𝒙(𝑖)

ℎ𝑛

 𝑉𝑛 = ℎ𝑛
𝑑

−1/2 1/2

1

−1/2 1/2

1

number of samples in the hypercube around 𝒙



Window function
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 Necessary conditions for window function to find

legitimate density function:

 𝜑(𝒙) ≥ 0

  𝜑 𝒙 𝑑𝒙 = 1

 Windows are also called kernels or potential functions.



Density estimation: non-parametric
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 𝑝𝑛 𝑥 =
1

𝑛
 

𝑖=1

𝑛

𝑁(𝑥|𝑥(𝑖), ℎ2) 1

2𝜋ℎ
𝑒
−
𝑥−𝑥(𝑖)

2

2ℎ2

𝜎 = ℎ

1   1.2   1.4   1.5   1.6   2   2.1   2.15   4   4.3   4.7   4.75   5

 𝑝 𝑥 =
1

𝑛
 

𝑖=1

𝑛

𝑁(𝑥|𝑥(𝑖), 𝜎2)

=
1

𝑛
 

𝑖=1

𝑛 1

2𝜋𝜎
𝑒
−
𝑥−𝑥(𝑖)

2

2𝜎2

Choice of 𝜎 is crucial.



Density estimation: non-parametric
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𝜎 = 0.02 𝜎 = 0.1

𝜎 = 0.5
𝜎 = 1.5



Window (or kernel) function: Width parameter
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𝑝𝑛 𝑥 =
1

𝑛
×

1

ℎ𝑛
𝑑 

𝑖=1

𝑛

𝜑
𝒙 − 𝒙(𝑖)

ℎ𝑛

 Choosing ℎ𝑛:

 Too large: low resolution

 Too small: much variability

 For unlimited 𝑛 , by letting 𝑉𝑛 slowly approach zero as 𝑛
increases 𝑝𝑛(𝒙) converges to 𝑝(𝒙)

[Duda, Hurt, and Stork]



Width parameter
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 For fixed 𝑛, a smaller ℎ results in higher variance while a larger

ℎ leads to higher bias.

 For a fixed ℎ, the variance decreases as the number of sample

points 𝑛 tends to infinity

 for a large enough number of samples, the smaller ℎ the better the

accuracy of the resulting estimate

 In practice, where only a finite number of samples is possible, a

compromise between ℎ and 𝑛 must be made.

 ℎ can be set using techniques like cross-validation where the density

estimation used for learning tasks such as classification



Practical issues: Curse of dimensionality
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 Large 𝑛 is necessary to find an acceptable density

estimation in high dimensional feature spaces

 𝑛 must grow exponentially with the dimensionality 𝑑.

 If 𝑛 equidistant points are required to densely fill a one-dim interval,

𝑛𝑑points are needed to fill the corresponding 𝑑-dim hypercube.

 We need an exponentially large quantity of training data to ensure that the

cells are not empty

 Also complexity requirements

𝑑 = 1 𝑑 = 2 𝑑 = 3



𝑘𝑛-nearest neighbor estimation
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 Cell volume is a function of the point location

 To estimate 𝑝(𝒙), let the cell around 𝒙 grow until it captures

𝑘𝑛 samples called 𝑘𝑛 nearest neighbors of 𝒙.

 𝑘𝑛 is a function of 𝑛

 Two possibilities can occur:

 high density near 𝒙 ⇒ cell will be small which provides a good

resolution

 low density near 𝒙 ⇒ cell will grow large and stop until higher

density regions are reached



𝑘𝑛-nearest neighbor estimation
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 Necessary and sufficient conditions of convergence:

 lim
𝑛→∞

𝑘𝑛 → ∞

 lim
𝑛→∞

𝑘𝑛/𝑛 → 0

 A family of estimates by setting 𝑘𝑛 = 𝑘1 𝑛 and choosing

different values for 𝑘1:

𝑝𝑛 𝒙 =
𝑘𝑛/𝑛

𝑉𝑛
⇒ 𝑉𝑛 ≈

1/𝑝(𝒙)

𝑛

𝑉𝑛 is a function of 𝒙

𝑘1 = 1



𝑘𝑛-Nearest Neighbor Estimation: Example
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 Discontinuities in the slopes

[Bishop]



Non-parametric density estimation: 

Summary
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 Generality of distributions

 With enough samples, convergence to an arbitrarily complicated target
density can be obtained.

 The number of required samples must be very large to assure
convergence

 grows exponentially with the dimensionality of the feature space

 These methods are very sensitive to the choice of window width or
number of nearest neighbors

 There may be severe requirements for computation time and
storage (needed to save all training samples).

 ‘training’ phase simply requires storage of the training set.

 computational cost of evaluating 𝑝(𝒙) grows linearly with the size of
the data set.



Nonparametric learners
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 Memory-based or instance-based learners

 lazy learning: (almost) all the work is done at the test time.

 Generic description:

 Memorize training (𝒙(1), 𝑦(1)), . . . , (𝒙(𝑛), 𝑦(𝑛)).

 Given test 𝒙 predict:  𝑦 = 𝑓(𝒙; 𝒙(1), 𝑦(1), . . . , 𝒙(𝑛), 𝑦(𝑛)).

 𝑓 is typically expressed in terms of the similarity of the

test sample 𝒙 to the training samples 𝒙(1), . . . , 𝒙(𝑛)



Parzen window & generative classification
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 If

1

𝑛1
×

1

ℎ𝑑
 
𝒙(𝑖)∈𝒟1

𝜑
𝒙−𝒙(𝑖)

ℎ

1

𝑛2
×

1

ℎ𝑑
 
𝒙(𝑖)∈𝒟2

𝜑
𝒙−𝒙(𝑖)

ℎ

>
𝑃(𝒞2)

𝑃(𝒞1)
decide 𝒞1

 otherwise decide 𝒞2

 𝑛𝑗 = 𝒟𝑗 (𝑗 = 1,2): number of training samples in class 𝒞𝑗
 𝒟𝑗 : set of training samples labels as 𝒞𝑗

 For large 𝑛 , it needs both high time and memory

requirements



Parzen window & generative classification: 

Example
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Smaller ℎ larger ℎ

[Duda, Hurt, and Stork]



𝑘𝑛-nearest neighbor estimation & generative 

classification
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 If
𝑘𝑛2𝑉2

𝑘𝑛1𝑉1
>

𝑃(𝒞2)

𝑃(𝒞1)
decide 𝒞1

 otherwise decide 𝒞2

 𝑛𝑗 = 𝒟𝑗 (𝑗 = 1,2): number of training samples in class 𝒞𝑗
 𝒟𝑗 : set of training samples labels as 𝒞𝑗

 𝑉𝑗 shows the hypersphere volumes

 𝑟𝑗: the radius of the hypersphere centered at 𝒙 containing 𝑘 samples

of the class 𝒞𝑗 (𝑗 = 1,2)

 𝑘 may not necessarily be the same for all classes



k-Nearest-Neighbor (kNN) rule
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 k-NN classifier: 𝑘 > 1 nearest neighbors

 Label for 𝒙 predicted by majority voting among its k-NN.

 𝑘 = 5

 What is the effect of 𝑘?

𝑥2

1

1

-1
1

𝒙 = [𝒙1, 𝒙2]
?

𝑥1



kNN classifier
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 Given

 Training data {(𝒙 1 , 𝑦 1 ), . . . , (𝒙 𝑛 , 𝑦 𝑛 )} are simply stored.

 Test sample:𝒙

 To classify 𝒙:

 Find 𝑘 nearest training samples to 𝒙

 Out of these 𝑘 samples, identify the number of samples 𝑘𝑗
belonging to class 𝒞𝑗 (𝑗 = 1, … , 𝐶).

 Assign 𝒙 to the class 𝒞𝑗∗ where 𝑗∗ = argmax
𝑗=1,…,𝑐

𝑘𝑗

 It can be considered as a discriminative method.



Probabilistic perspective of kNN
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 kNN as a discriminative nonparametric classifier

 Non-parametric density estimation for 𝑃(𝒞𝑗|𝒙)

 𝑃 𝒞𝑗 𝒙 ≈
𝑘𝑗

𝑘
where 𝑘𝑗 shows the number of training samples among

𝑘 nearest neighbors of 𝒙 that are labeled 𝒞𝑗

 Bayes decision rule for assigning labels



Nearest-neighbor classifier: Example
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 Voronoi tessellation:

 Each cell consists of all points closer to a given training point

than to any other training points

 All points in a cell are labeled by the category of the corresponding

training point.

[Duda, Hurt, and Strok’s Book]



kNN classifier: Effect of k
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[Bishop]



Nearest neighbor classifier: error bound
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 Nearest-Neighbor: kNN with 𝑘 = 1

 Decision rule:  𝑦 = 𝑦𝑁𝑁(𝒙) where 𝑁𝑁(𝒙) = argmin
𝑖=1,…,𝑁

𝒙 − 𝒙(𝑖)

 Cover & Hart 67: asymptotic risk of NN classifier satisfies:

𝑅∗ ≤ 𝑅∞
𝑁𝑁 ≤ 2𝑅∗(1 − 𝑅∗) ≤ 2𝑅∗

𝑅𝑛: expected risk of NN classifier with 𝑛
training examples drawn from 𝑝(𝒙, 𝑦)

𝑅∞
𝑁𝑁 = lim

𝑛→∞
𝑅𝑛
𝑁𝑁

𝑅∗: the optimal Bayes risk



k-NN classifier: error bound
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 Devr 96: the asymptotic risk of the kNN classifier 𝑅∞
= lim

𝑛→∞
𝑅𝑛 satisfies

𝑅∗ ≤ 𝑅∞
𝑘𝑁𝑁 ≤ 𝑅∗ + 2𝑅∞

𝑁𝑁

𝑘

 where 𝑅∗ is the optimal Bayes risk.



Instance-based learner
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 Main things to construct an instance-based learner:

 A distance metric

 Number of nearest neighbors of the test data that we look at

 A weighting function (optional)

 How to find the output based on neighbors?



Distance measures
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 Euclidean distance

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙′ 2
2 = 𝑥1 − 𝑥1

′ 2 +⋯+ 𝑥𝑑 − 𝑥𝑑
′ 2

 Distance learning methods for this purpose

 Weighted Euclidean distance

 𝑑𝒘 𝒙, 𝒙′ = 𝑤1 𝑥1 − 𝑥1
′ 2 +⋯+𝑤𝑑 𝑥𝑑 − 𝑥𝑑

′ 2

 Mahalanobis distance

 𝑑𝑨 𝒙, 𝒙′ = 𝒙1 − 𝒙1
′ 𝑇𝑨 𝒙1 − 𝒙1

′

 Other distances:

 Hamming, angle,…

 𝐿𝑝 𝒙, 𝒙′ =
𝑝

 𝑖=1
𝑑 𝑥𝑖 − 𝑥𝑖

′ 𝑝

Sensitive to irrelevant features



Distance measure: example
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𝑑 𝒙, 𝒙′ = 𝑥1 − 𝑥1
′ 2 + 𝑥2 − 𝑥2

′ 2 𝑑 𝒙, 𝒙′ = 𝑥1 − 𝑥1
′ 2 + 3 𝑥2 − 𝑥2

′ 2



Weighted kNN classification
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 Weight nearer neighbors more heavily:

 𝑦 = 𝑓 𝒙 = argmax
𝑐=1,…,𝐶

 
𝑗∈𝑁𝑘(𝒙)

𝑤𝑗(𝒙) × 𝐼(𝑐 = 𝑦 𝑗 )

𝑤𝑗(𝒙) =
1

𝒙 − 𝒙(𝑗) 2

 In the weighted kNN, we can use all training examples instead

of just 𝑘 (Stepard’s method):

 𝑦 = 𝑓 𝒙 = argmax
𝑐=1,…,𝐶

 
𝑗=1

𝑛

𝑤𝑗(𝒙) × 𝐼(𝑐 = 𝑦 𝑗 )

 Weights can be found using a kernel function 𝑤𝑗(𝒙) = 𝐾(𝒙, 𝒙(𝑗)):

 e.g.,𝐾(𝒙, 𝒙(𝑗)) = 𝑒
−
𝑑(𝒙,𝒙(𝑗))

𝜎2

An example of 

weighting function



Weighting functions
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𝑑 = 𝑑(𝒙, 𝒙′)

[Fig. has been adopted from Andrew Moore’s tutorial on “Instance-based learning”]



kNN regression
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 Simplest k-NN regression:

 Let 𝒙′ 1 , … , 𝒙′ 𝑘 be the 𝑘 nearest neighbors of 𝒙 and
𝑦′ 1 , … , 𝑦′ 𝑘 be their labels.

 𝑦 =
1

𝑘
 

𝑗=1

𝑘

𝑦′ 𝑗

 Problems of kNN regression for fitting functions:

 Problem 1: Discontinuities in the estimated function

 Solution:Weighted (or kernel) regression

 1NN: noise-fitting problem

 kNN (𝑘 > 1 ) smoothes away noise, but there are other
deficiencies.

 flats the ends



kNN regression: examples

39 [Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]

𝑘 = 1

𝑘 = 9

Dataset 1 Dataset 2 Dataset 3



Weighted (or kernel) kNN regression
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 Higher weights to nearer neighbors:

 𝑦 = 𝑓 𝒙 =
 𝑗∈𝑁𝑘(𝒙)

𝑤𝑗(𝒙)×𝑦
(𝑗)

 𝑗∈𝑁𝑘(𝒙)
𝑤𝑗(𝒙)

 In the weighted kNN regression, we can use all training

examples instead of just 𝑘 in the weighted form:

 𝑦 = 𝑓 𝒙 =
 𝑗=1
𝑛 𝑤𝑗(𝒙) × 𝑦(𝑗)

 𝑗=1
𝑛 𝑤𝑗(𝒙)



Kernel kNN regression
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 Choosing a good parameter (kernel width) is important.

𝜎 =
1

32
of x-axis width 𝜎 =

1

32
of x-axis width 𝜎 =

1

16
of x-axis width

[This slide has been adapted from Andrew Moore’s tutorial on “Instance-based learning”]



Kernel kNN regression
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 Disadvantages:

 not capturing the simple structure of the data

 failure to extrapolate at edges

[Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]

In these datasets, some regions are without samples

Best kernel widths have been used 



Locally weighted linear regression
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 For each test sample, it produces linear approximation to the

target function in a local region

 Instead of finding the output using weighted averaging (as in

the kernel regression), we fit a parametric function locally:

 𝑦 = 𝑓 𝒙, 𝒙 1 , 𝑦 1 , . . . , 𝒙 𝑛 , 𝑦 𝑛

 𝑦 = 𝑓 𝒙;𝒘 = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑑𝑥𝑑

𝐽 𝒘 =  

𝑖∈𝑁𝑘(𝒙)

𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

𝒘 is found for each test sample

Unweighted linear



Locally weighted linear regression
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 𝑦 = 𝑓 𝒙, 𝒙 1 , 𝑦 1 , . . . , 𝒙 𝑛 , 𝑦 𝑛

𝐽 𝒘 𝒙 =  

𝑖∈𝑁𝑘(𝒙)

𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

𝐽 𝒘 𝒙 =  

𝑖∈𝑁𝑘(𝒙)

𝐾 𝒙, 𝒙 𝑖 𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

𝐽 𝒘 𝒙 = 

𝑖=1

𝑛

𝐾 𝒙, 𝒙 𝑖 𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

e.g, 𝐾 𝒙,𝒙 𝑖 = 𝑒
−

𝒙−𝒙 𝑖
2

2𝜎2

weighted

Weighted on all training examples

unweighted



Locally weighted linear regression: example
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 More proper result than weighted kNN regression

𝜎 =
1

16
of x-axis width 𝜎 =

1

32
of x-axis width 𝜎 =

1

8
of x-axis width

[Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]
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 Idea 1: weighted kNN regression

 using the weighted average on the output of 𝒙’s neighbors (or on the

outputs of all training data):

 𝑦 =
 𝑖=1
𝑘 𝑦′

𝑖
𝐾(𝒙, 𝒙′(𝑖))

 𝑗=1
𝑘 𝐾(𝒙, 𝒙′(𝑗))

 Idea 2: Locally weighted parametric regression

 Fit a parametric model (e.g. linear function) to the neighbors of 𝒙 (or on

all training data).

 Implicit assumption: the target function is reasonably smooth.

𝑦

𝑥
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 Is SVM classifier parametric?

 𝑦 = sign(𝑤0 + 
𝛼𝑖>0

𝛼𝑖𝑦
𝑖 𝐾(𝒙, 𝒙(𝑖)))

 In general, we can not summarize it in a simple parametric

form.

 Need to keep around support vectors (possibly all of the training

data).

 However, 𝛼𝑖 are kind of parameters that are found in the

training phase
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 Learning is just storing the training data

 prediction on a new data based on the training data themselves

 An instance-based learner does not rely on assumption

concerning the structure of the underlying density function.

 With large datasets, instance-based methods are slow for

prediction on the test data

 kd-tree, Locally Sensitive Hashing (LSH), and other kNN approximations

can help.
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