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Introduction

» Estimation of arbitrary density functions

Parametric density functions cannot usually fit the densities we
encounter in practical problems.

e.g., parametric densities are unimodal.

Non-parametric methods don't assume that the model (from) of
underlying densities is known in advance

» Non-parametric methods (for classification) can be
categorized into
Generative
Estimate p(x|C;) from D; using non-parametric density estimation

Discriminative
Estimate p(C;|x) from D



Parametric vs. nonparametric methods

» Parametric methods need to find parameters from data and
then use the inferred parameters to decide on new data points

Learning: finding parameters from data

» Nonparametric methods

Training examples are explicitly used

Training phase is not required

» Both supervised and unsupervised learning methods can be
categorized into parametric and non-parametric methods.



Histogram approximation idea

» Histogram approximation of an unknown pdf
P(bl) =~ kn(bl)/n [ = 1, ,L

k., (b;): number of samples (among n ones) lied in the bin b;

Kn

» The corresponding estimated pdf:

P(by)
h

p(x) =

|x—fbl| Sg

Mid-point of
the bin b;



Non-parametric density estimation

» Probability of falling in a region R:
P = [, p(x")dx’ (smoothed version of p(x))

» D = {x(i)}?zlz a set of samples drawn i.i.d. according to p(x)

The probability that k of the n samples fall in R:

P, = (Z) P¥(1 — p)nk
Elk] = nP

This binomial distribution peaks sharply about the mean:

k .
k ~nP = — asan estimate for P

More accurate for larger n




Non-parametric density estimation

» We can estimate smoothed p(x) by estimating P:

» Assumptions: p(x) is continuous and the region R enclosing x
is so small that p is near constant in it:

P = j p(x)dx' =p(x) XV
R

V =Vol(R)
P k/n

(= -
xXER = plx) TRl

» Let V approach zero if we want to find p(x) instead of the
averaged version.
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Necessary conditions for converge

» P (X) is the estimate of p(x) using n samples:

I},: the volume of region around x

k,,:the number of samples falling in the region

k,/n
X) =
Pn (x) 7
» Necessary conditions for converge of p,,(x) to p(x):
limV, =0
Nn—o>00
lim k,, = o
n—oo
lim k,,/n=20

n—>00



Non-parametric density estimation: Main
approaches

» Two approaches of satisfying conditions:
k-nearest neighbor density estimator: fix K and determine the
value of V from the data

Volume grows until it contains K neighbors of x

Kernel density estimator (Parzen window): fix V and determine
K from the data

Number of points falling inside the volume can vary from point to
point



Parzen window

—~1/2 | 1/2

» Extension of histogram idea:

Hyper-cubes with length of side h (i.e., volume h?) are located on the

samples /
1

» Hypercube as a simple window function:

1 <1 <] gk
o) =11 (ul = S A A lugl < ) /

0 0.W.

nvn nvn

Kn 1 —x(®
b pa(x) = = — i=1<p(xh’; )

—x®
k, = ?=1 © (x h:, ) —>  number of samples in the hypercube around x

Vo = (hn)d



Window function

» Necessary conditions for window function to find
legitimate density function:

¢(x) =0
[ox)dx =1

» Windows are also called kernels or potential functions.



Density estimation: non-parametric
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Window (or kernel) function: Width parameter

x(z)
pn(x) == >< —2 @

» Choosing hy:

Too large: low resolution

Too small: much variability [Duda, Hurt, and Stork]

» For unlimited n, by letting V,, slowly approach zero as n
increases p,,(x) converges to p(x)

14



Width parameter

» For fixed n, a smaller h results in higher variance while a larger
h leads to higher bias.

» For a fixed h, the variance decreases as the number of sample
points 1 tends to infinity

for a large enough number of samples, the smaller h the better the
accuracy of the resulting estimate

» In practice, where only a finite number of samples is possible, a
compromise between h and n must be made.

h can be set using techniques like cross-validation where the density
estimation used for learning tasks such as classification



Practical issues: Curse of dimensionality

» Large n is necessary to find an acceptable density
estimation in high dimensional feature spaces

n must grow exponentially with the dimensionality d.

If n equidistant points are required to densely fill a one-dim interval,
n%points are needed to fill the corresponding d-dim hypercube.

We need an exponentially large quantity of training data to ensure that the
cells are not empty

» Also complexity requirements -

;I.'Q'.'

I




k,-nearest neighbor estimation

» Cell volume is a function of the point location

To estimate p(x), let the cell around x grow until it captures
k,, samples called k,, nearest neighbors of x.

k., is a function of n

» Two possibilities can occur:

high density near x = cell will be small which provides a good
resolution

low density near x = cell will grow large and stop until higher
density regions are reached



k,-nearest neighbor estimation

» Necessary and sufficient conditions of convergence:

lim k,, = oo

n—>00

lim k,/n—> 0

n—>00

» A family of estimates by setting k,, = k{+/n and choosing
different values for ky:

TR V/:/C3 N

W | Vn

I}, is a function of x

Pn (x) =



k,-Nearest Neighbor Estimation: Example

» Discontinuities in the slopes

[Bishop]




Non-parametric density estimation:
Summary

» Generality of distributions

With enough samples, convergence to an arbitrarily complicated target
density can be obtained.

» The number of required samples must be very large to assure
convergence

grows exponentially with the dimensionality of the feature space

» These methods are very sensitive to the choice of window width or
number of nearest neighbors

» There may be severe requirements for computation time and
storage (needed to save all training samples).

‘training’ phase simply requires storage of the training set.

computational cost of evaluating p(x) grows linearly with the size of
the data set.

20



Nonparametric learners

» Memory-based or instance-based learners

lazy learning: (almost) all the work is done at the test time.
» Generic description:
Memorize training (x(1), yD), ..., (x(™, y(™),

Given test x predict: § = f(x; x(D,yW) . 1) (),

» [ is typically expressed in terms of the similarity of the
test sample x to the training samples xM o xM)

21



Parzen window & generative classification

D) <P<x_x(i)>
nq hd x(i)ED h P(C .
- 2 5 P Gacide Cq
1.1 x—x() P(Cq
nthd Zx(i) €D ¢ h

otherwise decide C,

» If

n; = |Dj| (/ = 1,2): number of training samples in class C;

D;: set of training samples labels as C;

» For large n, it needs both high time and memory
requirements

22



Parzen window & generative classification:
Example

» 23 [Duda, Hurt, and Stork]



k,-nearest neighbor estimation & generative
classification

kn,V, P(Cz)
knq V1 P(Cq)

» If decide C,

otherwise decide C,

n; = |Dj| ( = 1,2): number of training samples in class C;
D;: set of training samples labels as C;

V; shows the hypersphere volumes

1;: the radius of the hypersphere centered at x containing k samples
of the class C; (j = 1,2)

k may not necessarily be the same for all classes

24



k-Nearest-Neighbor (kNN) rule

» k-NN classifier: k > 1 nearest neighbors
Label for x predicted by majority voting among its k-NN.

» k=5

X = [x1,x;]

» What is the effect of k?

25



kNN classifier

» Given

Training data {(xP,yD), ..., (™, y()} are simply stored.
Test sample: x

» To classify x:
Find k nearest training samples to x

Out of these k samples, identify the number of samples k;
belonging to class C; (j = 1, ..., C).

Assign x to the class C;- where j* = zjljr_sglrnacx k;

» It can be considered as a discriminative method.

26



Probabilistic perspective of KNN
» kNN as a discriminative nonparametric classifier
Non-parametric density estimation for P(C;|x)

P(€j|x) ~ % where k; shows the number of training samples among

k nearest neighbors of x that are labeled C;

Bayes decision rule for assigning labels

27



Nearest-neighbor classifier: Example

» Voronoi tessellation:
Each cell consists of all points closer to a given training point
than to any other training points

All points in a cell are labeled by the category of the corresponding
training point.

28 [Duda, Hurt, and Strok’s Book]



kNN classitier: |
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Nearest neighbor classifier: error bound
» Nearest-Neighbor: kNN with k =1

Decision rule: § = y"N®) where NN(x) = argmin | — x@|

1=1,..,

» Cover & Hart 67: asymptotic risk of NN classifier satisfies:

R* < RIN < 2R*(1 — R*) < 2R*
R,,: expected risk of NN classifier with n

training examples drawn from p(x, y)

RNN — Jim RNV

n—>0co

R*:the optimal Bayes risk

30



k-NN classifier: error bound

» Devr 96: the asymptotic risk of the kNN classifier R,
= lim R,, satisfies

n—>00

NN
R* < RENN < R* 4 [2Ew

where R™ is the optimal Bayes risk.

31



Instance-based learner

» Main things to construct an instance-based learner:
A distance metric

Number of nearest neighbors of the test data that we look at
A weighting function (optional)
How to find the output based on neighbors!?

33



Distance measures

» Euclidean distance

A0 x) = Jllx = = JGr =22 + -+ (g — 23
Sensitive to irrelevant features
» Distance learning methods for this purpose
Weighted Euclidean distance
dy (%, x) = \Jw1 (tr — 2% + -+ + wa(xg — x4)?
Mahalanobis distance
da(x,x") = \/(x1 —x1)TA(x; — x7)

» Other distances:
Hamming, angle, ...

Ly(x,x') = p\/zzdﬂ(xi — x{)p

34



Distance measure: example
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Weighted kNN classification

» Weight nearer neighbors more heavily:

9 = flx) = argmaxz: wi () X I1(c = yO)
c=1,...,C JEN(x)

1 An example of
() ”2 weighting function

» In the weighted kNN, we can use all training examples instead
of just k (Stepard’s method):

n .
y=f(x)= argmale wi(x) X I(c = y )
c=1,...,C Jj=1

» Weights can be found using a kernel function w;(x) = K(x, xU)):

_ _d(x,x(j))
eg, K(x,x())=¢ o2

36



Weighting functions
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37 [Fig. has been adopted from Andrew Moore’s tutorial on “Instance-based learning’]



kNN regression

» Simplest k-NN regression:

Let x’D, ..., x'®) be the k nearest neighbors of x and
y' D . '@ be their labels.

1 k .
5 — _ 1(j)

» Problems of kNN regression for fitting functions:
Problem |: Discontinuities in the estimated function
Solution:Weighted (or kernel) regression
I NN: noise-fitting problem

kNN (k > 1) smoothes away noise, but there are other
deficiencies.

flats the ends

38



kNN regression: examples
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» 39 [Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]



Weighted (or kernel) kNN regression

» Higher weights to nearer neighbors:

y=f(x) =

% e x) Wi xy V)

ZjENk(x) W] (x)

» In the weighted kNN regression, we can use all training
examples instead of just k in the weighted form:

B B }11Wj(x)><y(f)
= f(x) = w0

40



Kernel kNN regression

TR

1 .. 1 .. 1 ..
o= - of x-axis width o= - of x-axis width o= T of x-axis width

» Choosing a good parameter (kernel width) is important.

41 [This slide has been adapted from Andrew Moore’s tutorial on “Instance-based learning”]



Kernel kNN regression

In these datasets, some regions are without samples
Best kernel widths have been used

» Disadvantages:
not capturing the simple structure of the data
failure to extrapolate at edges

42 [Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]



Locally weighted linear regression

» For each test sample, it produces linear approximation to the
target function in a local region

» Instead of finding the output using weighted averaging (as in
the kernel regression), we fit a parametric function locally:

y = f(x, x@) @ .,x(”),y("))

y=fx;w) =wy+wix; + -+ wyxy

. A2
J(w) = Z (y(l) — WTx(l)) Unweighted linear
l iENL(x)

w is found for each test sample
43



Locally weighted linear regression

§ = fla,x®,y@ . x® )
_ (D) _ T +(D)? unweighted
WX = W X g
Jwe)= ) ) o
IENE(X) -

e.g, (x,x(i)) =e 202

Jw@) = ) KEx®) O -w'x®)’ e
IENE(X)
J(w(x)) = Z K(x,x0)(y® — wa(i))z
i=1
)

Weighted on all training examples

44



Locally weighted linear regression: example

A

.

T . 1 . 1 o
o= T of x-axis width o= - of x-axis width o= 3 of x-axis width

» More proper result than weighted kNN regression

45 [Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]



Locally weighted regression: summary

» ldea |:weighted kNN regression

using the weighted average on the output of X’s neighbors (or on the
outputs of all training data):

éc=1 y,(i)K(x» x'®)
5-;1 K(x,x'U))

5}:

» ldea 2: Locally weighted parametric regression

Fit a parametric model (e.g. linear function) to the neighbors of x (or on
all training data).

Implicit assumption: the target function is reasonably smooth.

y A

O Q
46
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Parametric vs. nonparametric methods

» Is SVM classifier parametric?

g =sign(wo + ) ay@K(xx))

a;>0
In general, we can not summarize it in a simple parametric
form.

Need to keep around support vectors (possibly all of the training
data).

However, a; are kind of parameters that are found in the
training phase

47



Instance-based learning: summary

» Learning is just storing the training data

prediction on a new data based on the training data themselves

» An instance-based learner does not rely on assumption
concerning the structure of the underlying density function.

» With large datasets, instance-based methods are slow for
prediction on the test data

kd-tree, Locally Sensitive Hashing (LSH), and other kNN approximations
can help.

48



Retference
» T. Mitchell,"Machine Learning”, 1998. [Chapter 8]
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