
Instance-based Learning
CE-717: Machine Learning
Sharif University of Technology

M. Soleymani

Fall 2016

Outline

2

 Non-parametric approach

 Unsupervised: Non-parametric density estimation

 Parzen Windows

 Kn-Nearest Neighbor Density Estimation

 Supervised: Instance-based learners

 Classification

 kNN classification

 Weighted (or kernel) kNN

 Regression

 kNN regression

 Locally linear weighted regression

Introduction

3

 Estimation of arbitrary density functions

 Parametric density functions cannot usually fit the densities we

encounter in practical problems.

 e.g., parametric densities are unimodal.

 Non-parametric methods don't assume that the model (from) of

underlying densities is known in advance

 Non-parametric methods (for classification) can be

categorized into

 Generative

 Estimate 𝑝(𝒙|𝒞𝑖) from 𝒟𝑖 using non-parametric density estimation

 Discriminative

 Estimate 𝑝(𝒞𝑖|𝒙) from 𝒟

Parametric vs. nonparametric methods

4

 Parametric methods need to find parameters from data and

then use the inferred parameters to decide on new data points

 Learning: finding parameters from data

 Nonparametric methods

 Training examples are explicitly used

 Training phase is not required

 Both supervised and unsupervised learning methods can be

categorized into parametric and non-parametric methods.

Histogram approximation idea

5

 Histogram approximation of an unknown pdf

 𝑃(𝑏𝑙) ≈ 𝑘𝑛(𝑏𝑙)/𝑛 𝑙 = 1,… , 𝐿

 𝑘𝑛(𝑏𝑙): number of samples (among n ones) lied in the bin 𝑏𝑙

 The corresponding estimated pdf:

 𝑝 𝑥 =
𝑃(𝑏𝑙)

ℎ
𝑥 − 𝑥𝑏𝑙 ≤

ℎ

2 ℎ

𝑘𝑛

Mid-point of

the bin 𝑏𝑙

Non-parametric density estimation

6

 Probability of falling in a region ℛ:

 𝑃 = ℛ 𝑝 𝒙′ 𝑑𝒙′ (smoothed version of 𝑝 𝒙)

 𝒟 = 𝒙 𝑖
𝑖=1

𝑛
: a set of samples drawn i.i.d. according to 𝑝 𝒙

 The probability that 𝑘 of the 𝑛 samples fall in ℛ:

 𝑃𝑘 =
𝑛
𝑘

𝑃𝑘 1 − 𝑃 𝑛−𝑘

 𝐸 𝑘 = 𝑛𝑃

 This binomial distribution peaks sharply about the mean:

 𝑘 ≈ 𝑛𝑃 ⇒
𝑘

𝑛
as an estimate for 𝑃

 More accurate for larger 𝑛

Non-parametric density estimation

7

 We can estimate smoothed 𝑝 𝒙 by estimating 𝑃:

 Assumptions: 𝑝 𝒙 is continuous and the region ℛ enclosing 𝒙
is so small that 𝑝 is near constant in it:

𝑃 =
ℛ

𝑝 𝒙′ 𝑑𝒙′ = 𝑝 𝒙 × 𝑉

𝑉 = 𝑉𝑜𝑙 ℛ

𝒙 ∈ ℛ ⇒ 𝑝 𝒙 =
𝑃

𝑉
≈
𝑘/𝑛

𝑉

 Let 𝑉 approach zero if we want to find 𝑝 𝒙 instead of the
averaged version.

Necessary conditions for converge

8

 𝑝𝑛 𝒙 is the estimate of 𝑝 𝒙 using 𝑛 samples:

 𝑉𝑛: the volume of region around 𝒙

 𝑘𝑛: the number of samples falling in the region

𝑝𝑛 𝒙 =
𝑘𝑛/𝑛

𝑉𝑛

 Necessary conditions for converge of 𝑝𝑛 𝒙 to 𝑝(𝒙):

 lim
𝑛→∞

𝑉𝑛 = 0

 lim
𝑛→∞

𝑘𝑛 = ∞

 lim
𝑛→∞

𝑘𝑛/𝑛 = 0

Non-parametric density estimation: Main

approaches

9

 Two approaches of satisfying conditions:

 k-nearest neighbor density estimator: fix K and determine the

value ofV from the data

 Volume grows until it contains K neighbors of 𝒙

 Kernel density estimator (Parzen window): fix V and determine

K from the data

 Number of points falling inside the volume can vary from point to

point

Parzen window

10

 Extension of histogram idea:

 Hyper-cubes with length of side ℎ (i.e., volume ℎ𝑑) are located on the

samples

 Hypercube as a simple window function:

𝜑 𝒖 = 1 (𝑢1 ≤
1

2
∧ …∧ 𝑢𝑑 ≤

1

2
)

0 𝑜.𝑤.

 𝑝𝑛 𝒙 =
𝑘𝑛

𝑛𝑉𝑛
=

1

𝑛𝑉𝑛
 𝑖=1
𝑛 𝜑

𝒙−𝒙(𝑖)

ℎ𝑛

 𝑘𝑛 = 𝑖=1
𝑛 𝜑

𝒙−𝒙(𝑖)

ℎ𝑛

 𝑉𝑛 = ℎ𝑛
𝑑

−1/2 1/2

1

−1/2 1/2

1

number of samples in the hypercube around 𝒙

Window function

11

 Necessary conditions for window function to find

legitimate density function:

 𝜑(𝒙) ≥ 0

 𝜑 𝒙 𝑑𝒙 = 1

 Windows are also called kernels or potential functions.

Density estimation: non-parametric

12

 𝑝𝑛 𝑥 =
1

𝑛

𝑖=1

𝑛

𝑁(𝑥|𝑥(𝑖), ℎ2) 1

2𝜋ℎ
𝑒
−
𝑥−𝑥(𝑖)

2

2ℎ2

𝜎 = ℎ

1 1.2 1.4 1.5 1.6 2 2.1 2.15 4 4.3 4.7 4.75 5

 𝑝 𝑥 =
1

𝑛

𝑖=1

𝑛

𝑁(𝑥|𝑥(𝑖), 𝜎2)

=
1

𝑛

𝑖=1

𝑛 1

2𝜋𝜎
𝑒
−
𝑥−𝑥(𝑖)

2

2𝜎2

Choice of 𝜎 is crucial.

Density estimation: non-parametric

13

𝜎 = 0.02 𝜎 = 0.1

𝜎 = 0.5
𝜎 = 1.5

Window (or kernel) function: Width parameter

14

𝑝𝑛 𝑥 =
1

𝑛
×

1

ℎ𝑛
𝑑

𝑖=1

𝑛

𝜑
𝒙 − 𝒙(𝑖)

ℎ𝑛

 Choosing ℎ𝑛:

 Too large: low resolution

 Too small: much variability

 For unlimited 𝑛 , by letting 𝑉𝑛 slowly approach zero as 𝑛
increases 𝑝𝑛(𝒙) converges to 𝑝(𝒙)

[Duda, Hurt, and Stork]

Width parameter

15

 For fixed 𝑛, a smaller ℎ results in higher variance while a larger

ℎ leads to higher bias.

 For a fixed ℎ, the variance decreases as the number of sample

points 𝑛 tends to infinity

 for a large enough number of samples, the smaller ℎ the better the

accuracy of the resulting estimate

 In practice, where only a finite number of samples is possible, a

compromise between ℎ and 𝑛 must be made.

 ℎ can be set using techniques like cross-validation where the density

estimation used for learning tasks such as classification

Practical issues: Curse of dimensionality

16

 Large 𝑛 is necessary to find an acceptable density

estimation in high dimensional feature spaces

 𝑛 must grow exponentially with the dimensionality 𝑑.

 If 𝑛 equidistant points are required to densely fill a one-dim interval,

𝑛𝑑points are needed to fill the corresponding 𝑑-dim hypercube.

 We need an exponentially large quantity of training data to ensure that the

cells are not empty

 Also complexity requirements

𝑑 = 1 𝑑 = 2 𝑑 = 3

𝑘𝑛-nearest neighbor estimation

17

 Cell volume is a function of the point location

 To estimate 𝑝(𝒙), let the cell around 𝒙 grow until it captures

𝑘𝑛 samples called 𝑘𝑛 nearest neighbors of 𝒙.

 𝑘𝑛 is a function of 𝑛

 Two possibilities can occur:

 high density near 𝒙 ⇒ cell will be small which provides a good

resolution

 low density near 𝒙 ⇒ cell will grow large and stop until higher

density regions are reached

𝑘𝑛-nearest neighbor estimation

18

 Necessary and sufficient conditions of convergence:

 lim
𝑛→∞

𝑘𝑛 → ∞

 lim
𝑛→∞

𝑘𝑛/𝑛 → 0

 A family of estimates by setting 𝑘𝑛 = 𝑘1 𝑛 and choosing

different values for 𝑘1:

𝑝𝑛 𝒙 =
𝑘𝑛/𝑛

𝑉𝑛
⇒ 𝑉𝑛 ≈

1/𝑝(𝒙)

𝑛

𝑉𝑛 is a function of 𝒙

𝑘1 = 1

𝑘𝑛-Nearest Neighbor Estimation: Example

19

 Discontinuities in the slopes

[Bishop]

Non-parametric density estimation:

Summary

20

 Generality of distributions

 With enough samples, convergence to an arbitrarily complicated target
density can be obtained.

 The number of required samples must be very large to assure
convergence

 grows exponentially with the dimensionality of the feature space

 These methods are very sensitive to the choice of window width or
number of nearest neighbors

 There may be severe requirements for computation time and
storage (needed to save all training samples).

 ‘training’ phase simply requires storage of the training set.

 computational cost of evaluating 𝑝(𝒙) grows linearly with the size of
the data set.

Nonparametric learners

21

 Memory-based or instance-based learners

 lazy learning: (almost) all the work is done at the test time.

 Generic description:

 Memorize training (𝒙(1), 𝑦(1)), . . . , (𝒙(𝑛), 𝑦(𝑛)).

 Given test 𝒙 predict: 𝑦 = 𝑓(𝒙; 𝒙(1), 𝑦(1), . . . , 𝒙(𝑛), 𝑦(𝑛)).

 𝑓 is typically expressed in terms of the similarity of the

test sample 𝒙 to the training samples 𝒙(1), . . . , 𝒙(𝑛)

Parzen window & generative classification

22

 If

1

𝑛1
×

1

ℎ𝑑

𝒙(𝑖)∈𝒟1

𝜑
𝒙−𝒙(𝑖)

ℎ

1

𝑛2
×

1

ℎ𝑑

𝒙(𝑖)∈𝒟2

𝜑
𝒙−𝒙(𝑖)

ℎ

>
𝑃(𝒞2)

𝑃(𝒞1)
decide 𝒞1

 otherwise decide 𝒞2

 𝑛𝑗 = 𝒟𝑗 (𝑗 = 1,2): number of training samples in class 𝒞𝑗
 𝒟𝑗 : set of training samples labels as 𝒞𝑗

 For large 𝑛 , it needs both high time and memory

requirements

Parzen window & generative classification:

Example

23

Smaller ℎ larger ℎ

[Duda, Hurt, and Stork]

𝑘𝑛-nearest neighbor estimation & generative

classification

24

 If
𝑘𝑛2𝑉2

𝑘𝑛1𝑉1
>

𝑃(𝒞2)

𝑃(𝒞1)
decide 𝒞1

 otherwise decide 𝒞2

 𝑛𝑗 = 𝒟𝑗 (𝑗 = 1,2): number of training samples in class 𝒞𝑗
 𝒟𝑗 : set of training samples labels as 𝒞𝑗

 𝑉𝑗 shows the hypersphere volumes

 𝑟𝑗: the radius of the hypersphere centered at 𝒙 containing 𝑘 samples

of the class 𝒞𝑗 (𝑗 = 1,2)

 𝑘 may not necessarily be the same for all classes

k-Nearest-Neighbor (kNN) rule

25

 k-NN classifier: 𝑘 > 1 nearest neighbors

 Label for 𝒙 predicted by majority voting among its k-NN.

 𝑘 = 5

 What is the effect of 𝑘?

𝑥2

1

1

-1
1

𝒙 = [𝒙1, 𝒙2]
?

𝑥1

kNN classifier

26

 Given

 Training data {(𝒙 1 , 𝑦 1), . . . , (𝒙 𝑛 , 𝑦 𝑛)} are simply stored.

 Test sample:𝒙

 To classify 𝒙:

 Find 𝑘 nearest training samples to 𝒙

 Out of these 𝑘 samples, identify the number of samples 𝑘𝑗
belonging to class 𝒞𝑗 (𝑗 = 1, … , 𝐶).

 Assign 𝒙 to the class 𝒞𝑗∗ where 𝑗∗ = argmax
𝑗=1,…,𝑐

𝑘𝑗

 It can be considered as a discriminative method.

Probabilistic perspective of kNN

27

 kNN as a discriminative nonparametric classifier

 Non-parametric density estimation for 𝑃(𝒞𝑗|𝒙)

 𝑃 𝒞𝑗 𝒙 ≈
𝑘𝑗

𝑘
where 𝑘𝑗 shows the number of training samples among

𝑘 nearest neighbors of 𝒙 that are labeled 𝒞𝑗

 Bayes decision rule for assigning labels

Nearest-neighbor classifier: Example

28

 Voronoi tessellation:

 Each cell consists of all points closer to a given training point

than to any other training points

 All points in a cell are labeled by the category of the corresponding

training point.

[Duda, Hurt, and Strok’s Book]

kNN classifier: Effect of k

29

[Bishop]

Nearest neighbor classifier: error bound

30

 Nearest-Neighbor: kNN with 𝑘 = 1

 Decision rule: 𝑦 = 𝑦𝑁𝑁(𝒙) where 𝑁𝑁(𝒙) = argmin
𝑖=1,…,𝑁

𝒙 − 𝒙(𝑖)

 Cover & Hart 67: asymptotic risk of NN classifier satisfies:

𝑅∗ ≤ 𝑅∞
𝑁𝑁 ≤ 2𝑅∗(1 − 𝑅∗) ≤ 2𝑅∗

𝑅𝑛: expected risk of NN classifier with 𝑛
training examples drawn from 𝑝(𝒙, 𝑦)

𝑅∞
𝑁𝑁 = lim

𝑛→∞
𝑅𝑛
𝑁𝑁

𝑅∗: the optimal Bayes risk

k-NN classifier: error bound

31

 Devr 96: the asymptotic risk of the kNN classifier 𝑅∞
= lim

𝑛→∞
𝑅𝑛 satisfies

𝑅∗ ≤ 𝑅∞
𝑘𝑁𝑁 ≤ 𝑅∗ + 2𝑅∞

𝑁𝑁

𝑘

 where 𝑅∗ is the optimal Bayes risk.

Instance-based learner

33

 Main things to construct an instance-based learner:

 A distance metric

 Number of nearest neighbors of the test data that we look at

 A weighting function (optional)

 How to find the output based on neighbors?

Distance measures

34

 Euclidean distance

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙′ 2
2 = 𝑥1 − 𝑥1

′ 2 +⋯+ 𝑥𝑑 − 𝑥𝑑
′ 2

 Distance learning methods for this purpose

 Weighted Euclidean distance

 𝑑𝒘 𝒙, 𝒙′ = 𝑤1 𝑥1 − 𝑥1
′ 2 +⋯+𝑤𝑑 𝑥𝑑 − 𝑥𝑑

′ 2

 Mahalanobis distance

 𝑑𝑨 𝒙, 𝒙′ = 𝒙1 − 𝒙1
′ 𝑇𝑨 𝒙1 − 𝒙1

′

 Other distances:

 Hamming, angle,…

 𝐿𝑝 𝒙, 𝒙′ =
𝑝

 𝑖=1
𝑑 𝑥𝑖 − 𝑥𝑖

′ 𝑝

Sensitive to irrelevant features

Distance measure: example

35

𝑑 𝒙, 𝒙′ = 𝑥1 − 𝑥1
′ 2 + 𝑥2 − 𝑥2

′ 2 𝑑 𝒙, 𝒙′ = 𝑥1 − 𝑥1
′ 2 + 3 𝑥2 − 𝑥2

′ 2

Weighted kNN classification

36

 Weight nearer neighbors more heavily:

 𝑦 = 𝑓 𝒙 = argmax
𝑐=1,…,𝐶

𝑗∈𝑁𝑘(𝒙)

𝑤𝑗(𝒙) × 𝐼(𝑐 = 𝑦 𝑗)

𝑤𝑗(𝒙) =
1

𝒙 − 𝒙(𝑗) 2

 In the weighted kNN, we can use all training examples instead

of just 𝑘 (Stepard’s method):

 𝑦 = 𝑓 𝒙 = argmax
𝑐=1,…,𝐶

𝑗=1

𝑛

𝑤𝑗(𝒙) × 𝐼(𝑐 = 𝑦 𝑗)

 Weights can be found using a kernel function 𝑤𝑗(𝒙) = 𝐾(𝒙, 𝒙(𝑗)):

 e.g.,𝐾(𝒙, 𝒙(𝑗)) = 𝑒
−
𝑑(𝒙,𝒙(𝑗))

𝜎2

An example of

weighting function

Weighting functions

37

𝑑 = 𝑑(𝒙, 𝒙′)

[Fig. has been adopted from Andrew Moore’s tutorial on “Instance-based learning”]

kNN regression

38

 Simplest k-NN regression:

 Let 𝒙′ 1 , … , 𝒙′ 𝑘 be the 𝑘 nearest neighbors of 𝒙 and
𝑦′ 1 , … , 𝑦′ 𝑘 be their labels.

 𝑦 =
1

𝑘

𝑗=1

𝑘

𝑦′ 𝑗

 Problems of kNN regression for fitting functions:

 Problem 1: Discontinuities in the estimated function

 Solution:Weighted (or kernel) regression

 1NN: noise-fitting problem

 kNN (𝑘 > 1) smoothes away noise, but there are other
deficiencies.

 flats the ends

kNN regression: examples

39 [Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]

𝑘 = 1

𝑘 = 9

Dataset 1 Dataset 2 Dataset 3

Weighted (or kernel) kNN regression

40

 Higher weights to nearer neighbors:

 𝑦 = 𝑓 𝒙 =
 𝑗∈𝑁𝑘(𝒙)

𝑤𝑗(𝒙)×𝑦
(𝑗)

 𝑗∈𝑁𝑘(𝒙)
𝑤𝑗(𝒙)

 In the weighted kNN regression, we can use all training

examples instead of just 𝑘 in the weighted form:

 𝑦 = 𝑓 𝒙 =
 𝑗=1
𝑛 𝑤𝑗(𝒙) × 𝑦(𝑗)

 𝑗=1
𝑛 𝑤𝑗(𝒙)

Kernel kNN regression

41

 Choosing a good parameter (kernel width) is important.

𝜎 =
1

32
of x-axis width 𝜎 =

1

32
of x-axis width 𝜎 =

1

16
of x-axis width

[This slide has been adapted from Andrew Moore’s tutorial on “Instance-based learning”]

Kernel kNN regression

42

 Disadvantages:

 not capturing the simple structure of the data

 failure to extrapolate at edges

[Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]

In these datasets, some regions are without samples

Best kernel widths have been used

Locally weighted linear regression

43

 For each test sample, it produces linear approximation to the

target function in a local region

 Instead of finding the output using weighted averaging (as in

the kernel regression), we fit a parametric function locally:

 𝑦 = 𝑓 𝒙, 𝒙 1 , 𝑦 1 , . . . , 𝒙 𝑛 , 𝑦 𝑛

 𝑦 = 𝑓 𝒙;𝒘 = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑑𝑥𝑑

𝐽 𝒘 =

𝑖∈𝑁𝑘(𝒙)

𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

𝒘 is found for each test sample

Unweighted linear

Locally weighted linear regression

44

 𝑦 = 𝑓 𝒙, 𝒙 1 , 𝑦 1 , . . . , 𝒙 𝑛 , 𝑦 𝑛

𝐽 𝒘 𝒙 =

𝑖∈𝑁𝑘(𝒙)

𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

𝐽 𝒘 𝒙 =

𝑖∈𝑁𝑘(𝒙)

𝐾 𝒙, 𝒙 𝑖 𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

𝐽 𝒘 𝒙 =

𝑖=1

𝑛

𝐾 𝒙, 𝒙 𝑖 𝑦 𝑖 −𝒘𝑇𝒙 𝑖 2

e.g, 𝐾 𝒙,𝒙 𝑖 = 𝑒
−

𝒙−𝒙 𝑖
2

2𝜎2

weighted

Weighted on all training examples

unweighted

Locally weighted linear regression: example

45

 More proper result than weighted kNN regression

𝜎 =
1

16
of x-axis width 𝜎 =

1

32
of x-axis width 𝜎 =

1

8
of x-axis width

[Figs. have been adopted from Andrew Moore’s tutorial on “Instance-based learning”]

Locally weighted regression: summary

46

 Idea 1: weighted kNN regression

 using the weighted average on the output of 𝒙’s neighbors (or on the

outputs of all training data):

 𝑦 =
 𝑖=1
𝑘 𝑦′

𝑖
𝐾(𝒙, 𝒙′(𝑖))

 𝑗=1
𝑘 𝐾(𝒙, 𝒙′(𝑗))

 Idea 2: Locally weighted parametric regression

 Fit a parametric model (e.g. linear function) to the neighbors of 𝒙 (or on

all training data).

 Implicit assumption: the target function is reasonably smooth.

𝑦

𝑥

Parametric vs. nonparametric methods

47

 Is SVM classifier parametric?

 𝑦 = sign(𝑤0 +
𝛼𝑖>0

𝛼𝑖𝑦
𝑖 𝐾(𝒙, 𝒙(𝑖)))

 In general, we can not summarize it in a simple parametric

form.

 Need to keep around support vectors (possibly all of the training

data).

 However, 𝛼𝑖 are kind of parameters that are found in the

training phase

Instance-based learning: summary

48

 Learning is just storing the training data

 prediction on a new data based on the training data themselves

 An instance-based learner does not rely on assumption

concerning the structure of the underlying density function.

 With large datasets, instance-based methods are slow for

prediction on the test data

 kd-tree, Locally Sensitive Hashing (LSH), and other kNN approximations

can help.

Reference

49

 T. Mitchell,“Machine Learning”, 1998. [Chapter 8]

