Course Overview and Introduction CE-717 : Machine Learning Sharif University of Technology

M. Soleymani Fall 2016

Course Info

- Instructor: Mahdieh Soleymani
 - Email: soleymani@sharif.edu
- Lectures: Sun-Tue (13:30-15:00)
- Website: <u>http://ce.sharif.edu/cources/95-96/1/ce717-2</u>

Text Books

- Pattern Recognition and Machine Learning, C. Bishop, Springer, 2006.
- Machine Learning, T. Mitchell, MIT Press, 1998.
- Additional readings: will be made available when appropriate.
- Other books:
 - The elements of statistical learning, T. Hastie, R. Tibshirani, J. Friedman, Second Edition, 2008.
 - Machine Learning: A Probabilistic Perspective, K. Murphy, MIT Press, 2012.

Marking Scheme

Midterm Exam:	25%
Final Exam:	30%
Project:	5-10%
Homeworks (written & programming) :	20-25%
Mini-exams:	15%

Machine Learning (ML) and Artificial Intelligence (AI)

ML appears first as a branch of AI

- ML is now also a preferred approach to other subareas of AI
 - Computer Vision, Speech Recognition, ...
 - Robotics
 - Natural Language Processing
- ML is a strong driver in Computer Vision and NLP

A Definition of ML

- Tom Mitchell (1998):Well-posed learning problem
 - A computer program is said to learn from <u>experience E</u> with respect to some <u>task T</u> and some <u>performance</u> <u>measure P</u>, if its performance on T, as measured by P, improves with experience E".
- Using the observed data to make better decisions
 - Generalizing from the observed data

ML Definition: Example

- Consider an email program that learns how to filter spam according to emails you do or do not mark as spam.
 - T: Classifying emails as spam or not spam.
 - E: Watching you label emails as spam or not spam.
 - P: The number (or fraction) of emails correctly classified as spam/not spam.

The essence of machine learning

- A pattern exist
- We do not know it mathematically
- We have data on it

Example: Home Price

Housing price prediction

Figure adopted from slides of Andrew Ng, Machine Learning course, Stanford.

Applicant form as the input:

age	23 years		
gender	male		
annual salary	\$30,000		
years in residence	1 year		
years in job	1 year		
current debt	\$15,000		
• • •	• • •		

Output: approving or denying the request

Components of (Supervised) Learning

- Unknown target function: $f: \mathcal{X} \to \mathcal{Y}$
 - Input space: X
 - Output space: \mathcal{Y}
- Training data: $(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$
- Pick a formula $g: \mathcal{X} \to \mathcal{Y}$ that approximates the target function f
 - \blacktriangleright selected from a set of hypotheses ${\cal H}$

Training data: Example

Components of (Supervised) Learning

Solution Components

Learning model composed of:

- Learning algorithm
- Hypothesis set
- Perceptron example

Perceptron classifier

- Input $x = [x_1, ..., x_d]$
- Classifier:

• If $\sum_{i=1}^{d} w_i x_i$ > threshold then output 1

• else output -1

• The linear formula $g \in \mathcal{H}$ can be written: $g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i} + \mathbf{w}_{0}\right)$

If we add a coordinate $x_0 = 1$ to the input:

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} x_{i}\right) \xrightarrow{\operatorname{Vector form}} g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{T} \mathbf{x})$$

 \mathbf{X}_{2}

Perceptron learning algorithm: linearly separable data

• Give the training data $(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})$

Misclassified data
$$(x^{(n)}, y^{(n)})$$
:
 $sign(w^T x^{(n)}) \neq y^{(n)}$

Repeat

Pick a misclassified data $(x^{(n)}, y^{(n)})$ from training data and update w:

$$\boldsymbol{w} = \boldsymbol{w} + \boldsymbol{y}^{(n)} \boldsymbol{x}^{(n)}$$

Until all training data points are correctly classified by g

Perceptron learning algorithm: Example of weight update

Experience (E) in ML

- Basic premise of learning:
 - "Using a set of observations to uncover an underlying process"
- We have different types of (getting) observations in different types or paradigms of ML methods

Paradigms of ML

- Supervised learning (regression, classification)
 - predicting a target variable for which we get to see examples.
- Unsupervised learning
 - revealing structure in the observed data
- Reinforcement learning
 - partial (indirect) feedback, no explicit guidance
 - Given rewards for a sequence of moves to learn a policy and utility functions
- Other paradigms: semi-supervised learning, active learning, online learning, etc.

Supervised Learning: Regression vs. Classification

- Supervised Learning
 - Regression: predict a <u>continuous</u> target variable
 - ▶ E.g., *y* ∈ [0,1]
 - **Classification**: predict a <u>discrete</u> target variable
 - E.g., $y \in \{1, 2, ..., C\}$

Data in Supervised Learning

 Data are usually considered as vectors in a d dimensional space

 x_1

 x_2

y

(Target)

 χ_d

. . .

- Now, we make this assumption for illustrative purpose
 - We will see it is not necessary

Columns:	Sample I		
Features/attributes/dimensions			
Rows: Data/points/instances/examples/samples Y column: Target/outcome/response/label	Sample 2		
	Sample n-l		
> 21	Sample		

Regression: Example

Housing price prediction

Figure adopted from slides of Andrew Ng

Classification: Example

Weight (Cat, Dog)

Supervised Learning vs. Unsupervised Learning

- Supervised learning
 - Given: Training set
 - ▶ labeled set of N input-output pairs $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$
 - Goal: learning a mapping from x to y
- Unsupervised learning
 - Given: Training set
 - $\left\{ \boldsymbol{x}^{(i)} \right\}_{i=1}^{N}$
 - Goal: find groups or structures in the data
 - Discover the intrinsic structure in the data

Supervised Learning: Samples

Unsupervised Learning: Samples

D

Sample Data in Unsupervised Learning

Unsupervised Learning:

Columns: Features/attributes/dimensions

Rows: Data/points/instances/examples/s amples

	<i>x</i> ₁	<i>x</i> ₂	 x _d
Sample I			
Sample 2			
•••			
Sample n-l			
Sample n			

Unsupervised Learning: Example Applications

- Clustering docs based on their similarities
 - Grouping new stories in the Google news site
- Market segmentation: group customers into different market segments given a database of customer data.
- Social network analysis

Reinforcement

Provides only an indication as to whether an action is correct or not

Data in supervised learning:

(input, correct output)

Data in Reinforcement Learning:

(input, some output, a grade of reward for this output)

Reinforcement Learning

- Typically, we need to get a sequence of decisions
 - it is usually assumed that reward signals refer to the entire sequence

Is learning feasible?

- Learning an unknown function is impossible.
 - > The function can assume any value outside the data we have.
- However, it is feasible in a probabilistic sense.

Example

Generalization

- We don't intend to memorize data but need to figure out the pattern.
- A core objective of learning is to generalize from the experience.
 - Generalization: ability of a learning algorithm to perform accurately on new, unseen examples after having experienced.

Components of (Supervised) Learning

Main Steps of Learning Tasks

- Selection of hypothesis set (or model specification)
 - Which class of models (mappings) should we use for our data?
- Learning: find mapping \hat{f} (from hypothesis set) based on the training data
 - Which notion of error should we use? (loss functions)
 - Optimization of loss function to find mapping \hat{f}
- Evaluation: how well \hat{f} generalizes to yet unseen examples
 - How do we ensure that the error on future data is minimized? (generalization)

Some Learning Applications

- Face, speech, handwritten character recognition
- Document classification and ranking in web search engines
- Photo tagging
- Self-customizing programs (recommender systems)
- Database mining (e.g., medical records)
- Market prediction (e.g., stock/house prices)
- Computational biology (e.g., annotation of biological sequences)
- Autonomous vehicles

ML in Computer Science

- Why ML applications are growing?
 - Improved machine learning algorithms
 - Availability of data (Increased data capture, networking, etc)
 - Demand for self-customization to user or environment
 - Software too complex to write by hand

Handwritten Digit Recognition Example

Data: labeled samples

Example: Input representation

'raw' input $\mathbf{x}=(x_0,x_1,x_2,\cdots,x_{256})$

linear model: $(w_0, w_1, w_2, \cdots, w_{256})$

Features: Extract useful information, e.g.,

intensity and symmetry $\mathbf{x} = (x_0, x_1, x_2)$

linear model: (w_0, w_1, w_2)

Example: Illustration of features

 $\mathbf{x} = (x_0, x_1, x_2)$ x_1 : intensity x_2 : symmetry

Example: Classification boundary

PLA:

Pocket:

Main Topics of the Course

- Supervised learning
 - Regression
 - Classification (our main focus)
- Learning theory
- Unsupervised learning
- Reinforcement learning
- Some advanced topics & applications

Most of the lectures are on this topic

Resource

Yaser S. Abu-Mostafa, Malik Maghdon-Ismail, and Hsuan Tien Lin, "Learning from Data", 2012.