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Topics
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 Feasibility of learning

 PAC learning

 VC dimension

 Structural Risk Minimization (SRM)



Feasibility of learning

3

 Does the training set 𝒟 tell us anything out of 𝒟?

 𝒟 does not tells us something certain about 𝑓 outside of 𝒟

 However, it can tell us something likely about 𝑓 outside of 𝒟

 Probability helps us to find learning theory



Feasibility of learning
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 These two questions:

 Can we make sure 𝐸𝑡𝑟𝑢𝑒(𝑓) is close to 𝐸𝑡𝑟𝑎𝑖𝑛(𝑓)?

 Can we make 𝐸𝑡𝑟𝑎𝑖𝑛(𝑓) small enough?



Generalizability of Learning 
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 Generalization error is important to us

 Why should doing well on the training set tell us anything

about generalization error?

 Can we relate error on training set to generalization error?

 Which are conditions under which we can actually prove

that learning algorithms will work well?



A related example
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 Value of 𝜇 is unknown to us

 We pick 𝑁 marbles independently

 The fraction of red marbles in sample =  𝜇

 𝜇Pr picking a red marble = 𝜇

Pr picking a green marble = 1 − 𝜇



Does  𝜇 say anything about 𝜇?
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 No:

 Samples can be mostly green while bin is mostly red

 Yes:

 Sample frequency  𝜇 is likely close to bin frequency 𝜇



What does  𝜇 say about 𝜇?
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 In a big sample (large 𝑁), 𝜈 is probably close to 𝜇 (within

𝜖):

Pr  𝜇 − 𝜇 > 𝜖 ≤ 2𝑒−2𝜖2𝑁

 Valid for all 𝑁 and 𝜖

 Bound does not depend on 𝜇

 Tradeoff: 𝑁, 𝜖, and the bound

 In the other words, “  𝜇 = 𝜇” is Probably Approximately

Correct (PAC)

Hoeffding’s Inequality



Recall: Learning diagram
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𝑐:

𝑐 ≈g

𝑥 1 , … , 𝑥 𝑁
𝑥 1 , 𝑦(1) , … , 𝑥 𝑁 , 𝑦(𝑁)

[Y.S. Abou Mostafa, et. al, “Learning From Data”, 2012]

We assume that some random process proposes instances, and teacher labels 

them (i.e., instances drawn i.i.d. according to a distribution 𝑃(𝒙))



Learning: Problem settings
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 Set of all instances 𝒳

 Set of hypotheses ℋ

 Set of possible target functions 𝐶 = {𝑐:𝒳 → 𝒴}

 Sequence of 𝑁 training instances 𝒟 = 𝒙(𝑛), 𝑐 𝒙(𝑛)

𝑛=1

𝑁

 𝒙 drawn at random from unknown distribution 𝑃 𝒙

 Teacher provides noise-free label 𝑐(𝒙) for it

 Learner observes a set of training examples 𝒟 for target

function 𝑐 and outputs a hypothesis ℎ ∈ ℋ estimating 𝑐



Connection of Hoeffding inequality to 

learning
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 In the bin example, the unknown is 𝜇

 In the learning problem the unknown is a function 𝑐:𝒳
→ 𝒴



Two notions of error
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 Training error of 𝒉: how often ℎ(𝒙) ≠ 𝑐(𝒙) on training

instances 𝐷
𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≡ 𝐸𝒙~𝒟 𝐼 ℎ(𝒙) ≠ 𝑐(𝒙)

=
1

𝒟
 

𝒙∈𝒟

𝐼 ℎ 𝒙 ≠ 𝑐 𝒙

 Test error of 𝒉: how often ℎ(𝒙) ≠ 𝑐(𝒙) over future

instances drawn at random from 𝑃(𝑋)

𝐸𝑡𝑟𝑢𝑒(ℎ) ≡ 𝐸𝒙~𝑃(𝑋) 𝐼 ℎ(𝒙) ≠ 𝑐(𝒙)

Training data

Probability distribution



Notation for learning
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 Both 𝜇 and  𝜇 depend on which hypothesis ℎ

  𝜇 is “in sample” denoted by 𝐸𝑡𝑟𝑎𝑖𝑛(ℎ)

 𝜇 is “out of sample” denoted by 𝐸𝑡𝑟𝑢𝑒(ℎ)

 The Hoeffding inequality becomes:

𝐸𝑡𝑟𝑢𝑒(ℎ)

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ)

Pr 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ − 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖 ≤ 2𝑒−2𝜖2𝑁



Are we done?
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 We cannot use this bound for the learned 𝑓 from data.

 Indeed, ℎ is assumed fixed in this inequality and for this ℎ,

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) generalizes to 𝐸𝑡𝑟𝑢𝑒(ℎ) .

 “verification” of ℎ, not learning

 We need to choose from multiple ℎ's and 𝑓 is not fixed

and instead is found according to the samples.



Hypothesis space as multiple bins
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 Generalizing the bin model to more than one hypothesis:



Hypothesis space: Coin example
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 Question: if you toss a fair coin 10 times, what is the

probability that it will get 10 heads?

 Answer: ≈ 0.1%

 Question: if you toss 1000 fair coins 10 times, what is the

probability that some of them will get 10 heads?

 Answer: ≈ 63%



A bound for the learning problem:

Using Hoeffding inequality
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Pr 𝐸𝑡𝑟𝑢𝑒 𝑓 − 𝐸𝑡𝑟𝑎𝑖𝑛 𝑓 > 𝜖

≤ Pr

𝐸𝑡𝑟𝑢𝑒 ℎ1 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ1 > 𝜖

or 𝐸𝑡𝑟𝑢𝑒 ℎ2 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ2 > 𝜖
…

or 𝐸𝑡𝑟𝑢𝑒 ℎ𝑀 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑀 > 𝜖

≤  
𝑖=1

𝑀

Pr 𝐸𝑡𝑟𝑢𝑒 ℎ𝑖 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑖 > 𝜖

≤  
𝑖=1

𝑀

2𝑒−2𝜖2𝑁

≤ 2 ℋ 𝑒−2𝜖2𝑁 ℋ = 𝑀



PAC bound:

Using Hoeffding inequality
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Pr 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ > 𝜖 ≤ 2 ℋ 𝑒−2𝜖2𝑁 = 𝛿

⇒ Pr 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≤ 𝜖 ≥ 1 − 𝛿

 With probability at least (1 − 𝛿) every ℎ satisfies

𝐸𝑡𝑟𝑢𝑒 ℎ < 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ +
ln2 ℋ + ln

1
𝛿

2𝑁

Thus, we can we bound 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) that shows the 

amount of overfiting



Sample complexity
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 How many training examples suffice?

 Given 𝜖 and 𝛿, yields sample complexity:

𝑁 ≥
1

2𝜖2
ln 2 ℋ + ln

1

𝛿

 Thus, we found a theory that relates

 Number of training examples

 Complexity of hypothesis space

 Accuracy to which target function is approximated

 Probability that learner outputs a successful hypothesis



An other problem setting
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 Finite number of possible hypothesis (e.g., decision trees 

of depth 𝑑0)

 A learner finds a hypothesis ℎ that is consistent with 

training data

 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 What is the probability that the true error of ℎ will be 

more than 𝜖?

 𝐸𝑡𝑟𝑢𝑒 ℎ ≥ 𝜖



True error of a hypothesis
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 True error of ℎ: probability that it will misclassify an example

drawn at random from 𝑃 𝒙

𝐸𝑡𝑟𝑢𝑒(ℎ) ≡ 𝐸𝒙~𝑃(𝑋) 𝐼 ℎ(𝒙) ≠ 𝑐(𝒙)

Target 𝑐(𝒙)



How likely is a consistent learner to pick a 

bad hypothesis?

22

 Bound on the probability that any consistent learner will

output ℎ with 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖

 Theorem [Haussler, 1988]: For target concept 𝑐, ∀ 0 ≤ 𝜖 ≤ 1

 If 𝐻 is finite and 𝒟 contains 𝑁 ≥ 1 independent random samples

Pr ∃ℎ ∈ ℋ,𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0 ∧ 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖

≤ ℋ 𝑒−𝜖𝑁



Haussler bound: Proof
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 What does the theorem mean?

Pr ∃ℎ ∈ ℋ,𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0 ∧ 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖

≤ ℋ 𝑒−𝜖𝑁

 For a fixed ℎ, how likely is a bad hypothesis (i.e., 𝐸𝑡𝑟𝑢𝑒 ℎ
> 𝜖) to label 𝑁 training data points right?

 Pr(ℎ labels one data point correctly|𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖) ≤ (1 − 𝜖)

 Pr(ℎ labels 𝑁 i. i. d data points correctly|𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖) ≤ 1 − 𝜖 𝑁



Haussler bound: Proof (Cont’d)
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 There may be many bad hypotheses ℎ1, … , ℎ𝑘 (i.e., 𝐸𝑡𝑒𝑠𝑡 ℎ1 > 𝜖,

…, 𝐸𝑡𝑒𝑠𝑡 ℎ𝑘 > 𝜖) that are consistent with 𝑁 training data

 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ1 = 0, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ2 = 0, …, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑘 = 0

 How likely is the learner pick a bad hypothesis (𝐸𝑡𝑒𝑠𝑡 ℎ > 𝜖)

among consistent ones {ℎ1, … , ℎ𝑘}?

 Pr ∃ℎ ∈ 𝐻, 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖 ∧ 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 = Pr 𝐸𝑡𝑟𝑢𝑒 ℎ1 > 𝜖 ∧ 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ1 = 0 or … or 𝐸𝑡𝑟𝑢𝑒 ℎ𝑘 > 𝜖 ∧ 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑘 = 0

 ≤  𝑖=1
𝑘 Pr(𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑖 = 0 ∧ 𝐸𝑡𝑟𝑢𝑒 ℎ𝑖 > 𝜖)

 ≤  𝑖=1
𝑘 Pr(𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑖 = 0|𝐸𝑡𝑟𝑢𝑒 ℎ𝑖 > 𝜖) ≤  𝑖=1

𝑘 1 − 𝜖 𝑁

 ≤ ℋ 1 − 𝜖 𝑁

 ≤ ℋ 𝑒−𝜖𝑁

[𝑃 A ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃 𝐵 ]

[𝑘 ≤ ℋ ]

[1 − 𝜖 ≤ 𝑒−𝜖 0 ≤ 𝜖 ≤ 1]



Haussler PAC Bound
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 Theorem [Haussler’88]: Consider finite hypothesis space 𝐻,

training set 𝐷 with m i.i.d. samples, 0 < 𝜖 < 1:

Pr ∃ℎ ∈ ℋ, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0|𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖 ≤ ℋ 𝑒−𝜖𝑁 ≤ 𝛿

 For any learned hypothesis ℎ ∈ ℋ that is consistent on the

training set 𝒟 (i.e., 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0), with probability at least (1
− 𝛿):

𝐸𝑡𝑟𝑢𝑒(ℎ) ≤ ϵ

Suppose we want this 

probability to be at most 𝛿.



Haussler PAC bound: Sample complexity
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 How many training examples suffice?

 Given 𝜖 and 𝛿, yields sample complexity:

𝑁 ≥
1

𝜖
ln ℋ + ln

1

𝛿

 Given 𝑁 and 𝛿, yields error bound:

𝜖 ≤
1

𝑁
ln ℋ + ln

1

𝛿

There are enough training examples to 
guarantee that any consistent hypothesis 
has error at most 𝜖 with probability 1 − 𝛿.

Error bound linear in 
1

𝑁
and only logarithmic in ℋ .



Example: Conjunction of up to 𝑑 Boolean literals
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 Consider a Boolean classification problem 𝑐:𝒳 → 𝒴

 Hypothesis space: rules that are in the form of conjunction of

up to 𝑑 Boolean literals

 Example: (𝑑 = 5 boolean features)

 if 𝒙 = [0 ? 1 ? ? ] then 𝑦 = 1 else 𝑦 = 0

 How many training examples 𝑁?

 “Any consistent learner using ℋ with probability≥ 0.99 will

output a hypothesis with 𝐸𝑡𝑟𝑢𝑒 ≤ 0.05”?

 𝑑 = 5 ⇒ 𝑁 > 201

 𝑑 = 10 ⇒ 𝑁 > 312

 𝑑 = 100 ⇒ 𝑁 > 2290

¬𝑥1 ∧ 𝑥3

𝛿 = 0.01
𝜖 = 0.05
ℋ = 3𝑑



Example: decision trees of limited depth
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 Consider a Boolean classification problem
 instances: vectors of 𝑑 boolean features

 Hypothesis space: decision trees of depth 2

 How many training examples 𝑚?

 “Any consistent learner using ℋ with probability≥ 0.99 will
output a hypothesis with 𝐸𝑡𝑟𝑢𝑒 ≤ 0.05”?

 𝑑 = 4 ⇒ 𝑚 > 184

 𝑑 = 4 ⇒ 𝑁 > 219

 𝑑 = 10 ⇒ 𝑁 > 281

 𝑑 = 100 ⇒ 𝑁 > 423

 𝑑 = 1000 ⇒ 𝑁 > 562

𝛿 = 0.01
𝜖 = 0.05

ℋ = 16 × 𝑑 × 𝑑 − 1 2



Limitations of Haussler’88 bound
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 There are consistent classifiers in the hypothesis space: ℎ

such that 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 Dependence on the size of hypothesis space:

 What if |ℋ| is too big or ℋ is continuous?



Limitation of the bounds
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 Until now, we find bounds for two cases:

 Haussler’s bound with the assumption ∃ℎ ∈ ℋ, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 Hoeffding’s bound

 If ℋ = {ℎ | ℎ: 𝒳 → 𝒴} is infinite,

 We seek a measure of complexity instead of |ℋ|?

 The largest subset of 𝒳 for which ℋ can guarantee zero training

error (regardless of the target function)

 VC dimension of ℋ is the size of this subset



Definitions
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 Dichotomy:

 An N-tuple of ±1 assigned to samples 𝒙(1), … , 𝒙(𝑁) ∈ 𝒳

 The dichotomies generated by ℋ on the data points

𝒙(1), … , 𝒙(𝑁):

ℋ 𝒙(1), … , 𝒙(𝑁) = ℎ 𝒙(1), … , 𝒙(𝑁) |ℎ ∈ ℋ

 The growth function of a hypothesis set ℋ is defined

as:

𝑚ℋ 𝑁 = max
𝒙(1),…,𝒙(𝑁)∈𝒳

ℋ 𝒙(1), … , 𝒙(𝑁)



Shattering a set of instances
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𝑚ℋ 𝑁 ≤ 2𝑁

 A set 𝒙(1), … , 𝒙(𝑁) is shattered by ℋ iff for every

labeling of these samples there exists some hypotheses in

ℋ consistent with this labeling

 (i.e., there exist hypotheses in ℋ that can realize this labeling)

𝑚ℋ 𝑁 = 2𝑁

 ℋ is as diverse as can be on this particular sample.



Perceptron in a 2-dim feature space
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 𝐻 = {(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2) > 0 → 𝑦 = 1)}



Polynomial bound on 𝑚ℋ 𝑘
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 Break point: If no data set of size 𝑘 can be shattered by ℋ,

then 𝑘 is said to be a break point for ℋ .

𝑚ℋ 𝑘 < 2𝑘

 We can bound 𝑚ℋ 𝑘 for all values of 𝑁 by a simple

polynomial based on this break point.

 Theorem: If 𝑚ℋ 𝑘 < 2𝑘 for some value 𝑘, then:

𝑚ℋ 𝑁 ≤  

𝑖=0

𝑘−1

𝑁
𝑖

Maximum power is 𝑁𝑘−1

Sauer’s Lemma



Break point: Example
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 Example: None of 4 points can be shattered by the two-

dimensional perceptron

 This puts a significant constraint on # of dichotomies that

can be realized by the perceptron on 5 or more points.



Growth function example: 1-D intervals

36

 𝑐: 𝑥 → {0,1}

 What isVC dimension of:

 Positive rays:

 H1(open intervals to right):

 if 𝑥 > 𝑎 then 𝑦 = 1 else 𝑦 = 0

 Positive intervals:

 H2 (inside intervals): if 𝑎 < 𝑥 < 𝑏 then 𝑦 = 1 else 𝑦 = 0

𝑚𝐻1
𝑁 = 𝑁 + 1

𝑚𝐻2
𝑁 =

𝑁 + 1
2

+ 1



Generalization bound using growth function

37

Pr 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ > 𝜖 ≤ 4𝑚ℋ 2𝑁 𝑒−
1
8
𝜖2𝑁

 With probability at least (1 − 𝛿) every ℎ ∈ 𝐻 satisfies

𝐸𝑡𝑟𝑢𝑒 ≤ 𝐸𝑡𝑟𝑎𝑖𝑛 +
8 ln𝑚ℋ 2𝑁 + 8 ln

4
𝛿

𝑁

 In many cases, this bounds will be tighter than the

previous bound for finite hypothesis spaces too.

Vapnik-Chervonenkis inequality



𝑚ℋ 𝑁 relates to overlaps

38



Vapnick-Chervonenkis (VC) dimension

39

 The smaller break point, the tighter bound

 Vapnik-Chervonenkis 𝑉𝐶(ℋ): the size of the largest set of

samples that can be shattered by ℋ.

 𝑉𝐶(ℋ) is the largest value of 𝑁 for which 𝑚ℋ 𝑁 = 2𝑁

 In order to prove that 𝑉𝐶(ℋ) is 𝑘:

 There’s at least one set of size 𝑘 that ℋ can shatter.

 And there is no set of 𝑘 + 1 points that can be shattered.

 for all 𝑘 + 1 points, there exists a labeling that cannot be shattered



VC dimension: 1-D intervals

40

 𝑐: 𝑋 → {0,1}

 What isVC dimension of:

 Positive rays:

 H1(open intervals to right):

 if 𝑥 > 𝑎 then 𝑦 = 1 else 𝑦 = 0

 Positive intervals:

 H2 (inside intervals): if 𝑎 < 𝑥 < 𝑏 then 𝑦 = 1 else 𝑦 = 0

𝑉𝐶 𝐻1 = 1
𝑚𝐻1

𝑁 = 𝑁 + 1

𝑉𝐶 𝐻2 = 2

𝑚𝐻2
𝑁 =

𝑁 + 1
2

+ 1



Bound on 𝑚ℋ 𝑘 using VC

41

 Since 𝑘 = 𝑉𝐶(ℋ) + 1 is a break point for 𝑚ℋ 𝑁 :

𝑚ℋ 𝑁 ≤  

𝑖=0

𝑉𝐶 ℋ

𝑁
𝑖

 

𝑖=0

𝑘

𝑁
𝑖

≤ 𝑁𝑘 + 1

⇒ 𝑚ℋ 𝑁 ≤ 𝑁𝑉𝐶 ℋ + 1



VC dimension: Perceptron in a 2-D space

42

Can be shattered by linear 

boundaries

Cannot be shattered by linear 

boundaries

However, we seek the set of points 

with the most possible dichotomies 



VC dimension: Perceptron in a 2-D space
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 𝑉𝐶(𝐻) ≥ 3

 None of 4 points in a 2-D space can be shattered by perceptron

 𝑉𝐶(𝐻) ≤ 3

⇒ 𝑉𝐶 𝐻 = 3



VC of Perceptron
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 𝑑 = 2 ⟹ 𝑉𝐶 = 3

 In general 𝑉𝐶 = 𝑑 + 1



45



46



47



For any 𝑑 + 2 points
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 𝒙(1), … , 𝒙 𝑑+1 , 𝒙(𝑑+2)

 Since we have more points than dimensions, thus:

∃𝑚, 𝒙 𝑚 =  

𝑛≠𝑚

𝑎𝑛𝒙
𝑛

where not all the 𝑎𝑛’s are zero



For any 𝑑 + 2 points, we cannot reach all 

dichotomies
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𝒙 𝑚 =  

𝑛≠𝑚

𝑎𝑛𝒙
𝑛

⇒ 𝒘𝑇𝒙 𝑚 =  

𝑛≠𝑚

𝑎𝑛𝒘
𝑇𝒙 𝑛

 If 𝑦(𝑛) = sign 𝒘𝑇𝒙 𝑛 = sign(𝑎𝑖) then:

𝑎𝑛𝒘
𝑇𝒙 𝑛 > 0

 This forces 𝒘𝑇𝒙 𝑚 =  𝑛≠𝑚 𝑎𝑛𝒘
𝑇𝒙 𝑛 > 0

 Therefore, y(m) = sign 𝒘𝑇𝒙 𝑚 = +1



VC of perceptron in d-dimensional space
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 We showed that 𝑉𝐶 ≥ 𝑑 + 1 and 𝑉𝐶 ≤ 𝑑 + 1 thus 𝑉𝐶
= 𝑑 + 1

 In Perceptron the VC is the number of parameters

(𝑤0, 𝑤1, … , 𝑤𝑑)



Other examples
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 Positive rays

 Positive intervals

𝑎

𝑎 𝑏



VC dimension as degrees of freedom
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 Parameters creates degrees of freedom

 VC as effective degrees of freedom

 How expressive is this model

 Not just the # of parameters

 The effective number of parameters



𝑉𝐶 𝐻 = ∞
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 If 𝑚ℋ 𝑁 = 2𝑁 for all 𝑁 then 𝑉𝐶 𝐻 = ∞

 If 𝑉𝐶 𝐻 = ∞ then no matter how large the data set is,

we cannot make generalization conclusions based on the

VC analysis.



Consistent learning
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 𝐸𝑡𝑟𝑢𝑒converges 𝐸𝑡𝑟𝑎𝑖𝑛 when 𝑁 increases

𝑁

𝑁

𝐸𝑡𝑟𝑎𝑖𝑛

𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑎𝑖𝑛



Vapnik main theorem

55

 A model is consistent if and only if the H has finite VC

dimension

 A finite VC dimension not only guarantees consistency,

but this is the only way to build a model that generalizes.



Main result

56

 No break point ⟹ 𝑚ℋ 𝑁 = 2𝑁

 Any break point⟹ 𝑚ℋ 𝑁 is polynomial in 𝑁

 Finite 𝑉𝐶(ℋ) ⇒ 𝑓 ∈ ℋ will generalize



VC dimension and learning

57

 Independent of learning algorithm

 Independent of target function

 Independent of input distribution



Practical issues
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 The obtained bounds are loose.

 Although bound is loose, it can be useful for comparing

the generalization of different methods

 In real application, models with lower VC tends to

generalize better



Practical: how many samples do I need?

59

 Rule of thumb: requiring 𝑁 to be at least 10 × 𝑉𝐶(𝐻) to

get decent generalization



VC vs. bias-variance
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𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑢𝑒 = 𝐸𝒟 𝐸𝑡𝑟𝑢𝑒 𝑓𝒟

𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑎𝑖𝑛 = 𝐸𝒟 𝐸𝑡𝑟𝑎𝑖𝑛 𝑓𝒟

𝐸𝑡𝑟𝑎𝑖𝑛 𝐸𝑡𝑟𝑎𝑖𝑛



Summary of PAC bounds
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With probability ≥ 1 − 𝛿

 For all ℎ ∈ 𝐻 s.t. 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

𝐸𝑡𝑟𝑢𝑒 ℎ ≤ 𝜖 =
ln 𝐻 + ln

1
𝛿

2𝑁

 For all ℎ ∈ 𝐻

𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≤ 𝜖 =
ln 2𝐻 + ln

1
𝛿

2𝑁

 For all ℎ ∈ 𝐻

𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≤ 𝜖 =
8 ln𝑚ℋ 2𝑁 + 8 ln

4
𝛿

𝑁

Finite 

hypothesis

space

Infinite 

hypothesis

space



Using PAC bounds for model selection
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 Consider nested model spaces 𝐻1, 𝐻2, … , 𝐻𝑘 , … in order of

increasing complexity:

 Finite hypothesis spaces: 𝐻1 ≤ 𝐻2 ≤ ⋯ ≤ 𝐻𝑘 ≤ ⋯

 Infinite hypothesis spaces: 𝑉𝐶(𝐻1) ≤ 𝑉𝐶(𝐻2) ≤ ⋯ ≤ 𝑉𝐶(𝐻𝑘) ≤ ⋯

 For each hypothesis space 𝐻𝑘, we know with high probability

(≥ 1 − 𝛿𝑘), for all ℎ ∈ 𝐻𝑘:

𝐸𝑡𝑟𝑢𝑒(ℎ) ≤ 𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) + 𝜖(𝐻𝑘)

 As complexity 𝑘 increases, 𝐸𝑡𝑟𝑎𝑖𝑛 decreases but 𝜖(𝐻𝑘)
increases (Bias variance tradeoff)

𝜖(𝐻𝑘) : capacity term that depends on |𝐻𝑘| or 𝑉𝐶(𝐻𝑘)



Model selection by SRM
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trade-off between hypothesis space complexity 

and the quality of fitting the training data 

 SRM finds the subset of functions which minimizes the bound

on the true error (risk)

error

𝜖(ℎ)
Capacity term

𝐸𝑡𝑟𝑎𝑖𝑛

ℎ

Bound on 𝐸𝑡𝑟𝑢𝑒(ℎ) is

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) + 𝜖(ℎ)

𝐻4𝐻1 𝐻2 𝐻3

𝐸𝑡𝑟𝑢𝑒 ℎ < 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ +
VC(𝐻) ln

2𝑁
𝑉𝐶(𝐻)

+ 1 + ln
4
𝛿

𝑁

𝜖(ℎ)



Model selection by SRM 
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 Structural Risk Minimization (SRM):

 Within each model space, find the best hypothesis using

Empirical Risk Minimization (ERM):

 ℎ = argmin
ℎ∈𝐻

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ)

 Choose model space that minimizes the upper bound on

𝐸𝑡𝑟𝑢𝑒:

 𝑘 = argmin
𝑘≥1

𝐸𝑡𝑟𝑎𝑖𝑛
 ℎ𝑘 + 𝜖 𝐻𝑘

 Final hypothesis is  ℎ =  ℎ 𝑘



Summary
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 PAC bounds on true error in terms of training error and complexity
of hypothesis space

 Bound for perfectly consistent learner (𝐸𝑡𝑟𝑎𝑖𝑛(ℎ
∗) = 0)

 Bound for agnostic learning (𝐸𝑡𝑟𝑎𝑖𝑛(ℎ
∗) > 0)

 |𝐻| = ∞ ⇒VC dimension

 VC provides much tighter bounds in many cases

 Complexity of the classifier depends on number of points that can
be classified exactly

 Finite case: Number of hypothesis

 Infinite case:VC dimension

 SRM

 Bias-Variance tradeoff in learning theory

 Model selection using SRM

 Bounds are often too loose in practice
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