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Topics

» Feasibility of learning

» PAC learning
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» Structural Risk Minimization (SRM)



Feasibility of learning

» Does the training set D tell us anything out of D?

D does not tells us something certain about f outside of D

However, it can tell us something likely about f outside of D

» Probability helps us to find learning theory



Feasibility of learning

» These two questions:

Can we make sure E,0(f) is close to E¢ygqin(f)!?

Can we make E¢;4in, (f) small enough?



Generalizability of Learning

» Generalization error is important to us

» Why should doing well on the training set tell us anything
about generalization error!?

Can we relate error on training set to generalization error?

» Which are conditions under which we can actually prove
that learning algorithms will work well?



BIN

A related example SAMPLE
m 0000000000
{1 = fraction

of red marbles

Pr[picking a red marble] = u

Pr[picking a green marble] =1 — u

;;;;;;;;;

Ll = probability
of red marbles

» Value of 1 is unknown to us

» We pick N marbles independently

» The fraction of red marbles in sample =[i



Does [i say anything about u?
» No:

Samples can be mostly green while bin is mostly red
» Yes:

Sample frequency /i is likely close to bin frequency u



What does [i say about u?

» In a big sample (large N), v is probably close to u (within
€):
Pr[|ii — u| > €] < 2e~2€°N
Hoeffding’s Inequality

Valid for all N and €
Bound does not depend on u
Tradeoff: N, €, and the bound

» In the other words, “fi = u” is Probably Approximately
Correct (PAC)



Recall: Learning diagram

UNKNOWN TARGET FUNCTION
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ALGORITHM
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H

FINAL
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c =g

We assume that some random process proposes instances, and teacher labels
them (i.e., instances drawn i.i.d. according to a distribution P(x))

9 [Y.S.Abou Mostafa, et. al,“Learning From Data”, 2012]



Learning: Problem settings

» Set of all instances X'
» Set of hypotheses H
» Set of possible target functions C = {c: X — Y}

» Sequence of N training instances D = {(x(n), C(x(n)))}N
n=

1
x drawn at random from unknown distribution P(x)

Teacher provides noise-free label c(x) for it

» Learner observes a set of training examples D for target
function ¢ and outputs a hypothesis h € H estimating ¢

10



Connection of Hoefiding inequality to
learning

» In the bin example, the unknown is

» In the learning problem the unknown is a function c: X

-Y

? h(x)Fc(x)

'.I ® /(x)=C(X)

e . Hypothesis got it right

e . Hypothesis got it wrong
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Two notions of error

» Training error of h: how often h(x) # c(x) on training
instances D

Etralin(h) = Ex-plI(h(x) # c(x))]
= W;I(h(x) # c(x))
\

Training data

» Test error of h: how often h(x) # c(x) over future
instances drawn at random from P (X)

Etrue(h) = Ex-px)lI(h(x) # c(x))]
\

12 Probability distribution



Notation for learning

» Both 1 and [i depend on which hypothesis h

» [ is “in sample” denoted by E;}.;in (1)
» wis “out of sample” denoted by E; . (h)

» The Hoeffding inequality becomes:

Pr{|Eprain(h) — Eprue(h)] > €] < 2e726°N

0000000000
b Etrain(h)



Are we done?

» We cannot use this bound for the learned f from data.

» Indeed, h is assumed fixed in this inequality and for this A,
Etrqin(h) generalizes to E¢pye () .

“verification” of h, not learning

» We need to choose from multiple h's and f is not fixed
and instead is found according to the samples.
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Hypothesis space as multiple bins

» Generalizing the bin model to more than one hypothesis:
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Hypothesis space: Coin example

» Question: if you toss a fair coin 10 times, what is the
probability that it will get 10 heads!?

Answer:= 0.1%

» Question: if you toss 1000 fair coins 10 times, what is the
probability that some of them will get 10 heads!?
Answer: = 63%
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A bound for the learning problem:
Using Hoeffding inequality
Pr[lEtrue(f) o Etrain(f)l > E]

_ |Et7”ue(h1) - Etrain(hl)l > € |
< pr| O [Eerue (h2) = Eerain(h2)| > €

-OrlEtrue(hM) — Etrain(hM)l > €]

M
< Z 1Pr[|Etrue(hi) _ Etrain(hi)l > E]
1=

M
< z 2o —2€°N
=1

< Zl}[le—ZEZN | H| =M

17



PAC bound:
Using Hoeffding inequality

Pr{|Eqrue (h) — Ergin(R)| > €] < 2|H |e~26°N

= Pr[lEtrue(h) — Etrain(h)l <e€e]=1-6

» With probability at least (1 — &) every h satisfies

In2|H| +1n1

)
\ 2N

Etrue (h) < Etrain (h) +

Thus, we can we bound Ef,.,.(h) — E¢-4;n(h) that shows the
amount of overfiting
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Sample complexity

» How many training examples suffice?

Given € and 4, yields sample complexity:

1 1
> — _
N > 52 (anI}[I +ln<5>)

» Thus, we found a theory that relates
Number of training examples
Complexity of hypothesis space
Accuracy to which target function is approximated

Probability that learner outputs a successful hypothesis
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An other problem setting

» Finite number of possible hypothesis (e.g., decision trees
of depth d,)

» A learner finds a hypothesis h that is consistent with
training data

Etrain (h) =0

» What is the probability that the true error of h will be
more than €?

Etrue (h) > €

20



True error of a hypothesis

Instance space X Target c(x)

Where ¢
and h disagree

» True error of h: probability that it will misclassify an example
drawn at random from P(x)

Etrue(h) = ExopylI(h(x) # c(x))]
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How likely is a consistent learner to pick a
bad hypothesis?

Bound on the probability that any consistent learner will
output h with E;,.(h) > €

Theorem [Haussler, 1988]: For target concept ¢,V 0 <€ <1

If H is finite and D contains N = 1 independent random samples

Pr[3h € H, Etrain(h) = 0 A Egpye(h) > €]

< |H]|e €N
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Haussler bound: Proof

» What does the theorem mean?
Pr[3h € H, Etrqin(h) = 0 A Epye (h) > €]

< |H]|e €N

» For a fixed h, how likely is a bad hypothesis (i.e., E¢;ye (h)
> €) to label N training data points right?

Pr(h labels one data point correctly|E;yu o (h) > €) < (1 —€)
Pr(h labels N i.i.d data points correctly|E;.(h) > €) < (1 — )V
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Haussler bound: Proof (Cont’d)

» There may be many bad hypotheses hq, ..., h; (i.e., Etosi(hq) > €,
e.wy Etost (Mg ) > €) that are consistent with N training data

Etrain(h1) = 0, Etrain(hy) =0, ..., Egrgin(hy) = 0
» How likely is the learner pick a bad hypothesis (E;p5:(h) > €)
among consistent ones {hq, ..., hi }?
Pr(3h € H,Eyye(h) > € A Eppgin(h) = 0)

= Pr((Etrue(hl) > € A Etrqin(hy) = 0) or ... or (Egrye(hy) > € A Egrgin(hy) = O))

< 2y Pr(Eerain(hy) = 0 A Egrye(hy) > €) [P(AU B) < P(4) + P(B)]
< Y Pr(Erain(hy) = 0|Eqe(hy) > €) < X, (1 — eV

< |H|A-e" [k < |H]]

< |H|e=N [l—e<e € 0<e<1]
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Haussler PAC Bound

» Theorem [Haussler’88]: Consider finite hypothesis space H,
training set D with m i.i.d. samples, 0 < € < 1:

Pr[3h € H,E gin(h) = 0|Efye(h) > €] < |H|e N <6 |

Suppose we want this
probability to be at most 6.

» For any learned hypothesis h € ' that is consistent on the
training set D (i.e., E¢pqin(h) = 0), with probability at least (1
—0):

Etrue (h) S €

25



Haussler PAC bound: Sample complexity

» How many training examples suffice?

Given € and 4, yields sample complexity:

1 1
N > —(lnl?—[l + In (—))
€ o)

There are enough training examples to
guarantee that any consistent hypothesis
has error at most € with probability 1 — §.

» Given N and ¢, yields error bound:

<1 In|H| +1 !
E_Nn Il5

. .1 . .
26 Error bound linear in ~ and only logarithmic in |H|.



Example: Conjunction of up to d Boolean literals

» Consider a Boolean classification problem ¢: X —» Y

» Hypothesis space: rules that are in the form of conjunction of
up to d Boolean literals

Example: (d = 5 boolean features)
ifx=[0?17?7]theny=1elsey=0

—1Xq A X3

» How many training examples N?

“Any consistent learner using H_with probability>_0.99 will
output a hypothesis with E;,.,,, < 0.05?

d=5= N> 201 5= 001

d=10=> N > 312 e = 0.05

d =100 = N > 2290 ] = 3¢
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Example: decision trees of limited depth

» Consider a Boolean classification problem
instances: vectors of d boolean features

» Hypothesis space: decision trees of depth 2

» How many training examples m?

“Any consistent learner using H{_with probability>=_0.99 will
output a hypothesis with E;,.,,, < 0.05?

d=4= N> 219
d=10= N > 281 6 = 0.01
_ e = 0.05
d =100 = N > 423 3] = 16 % d x (d — 1)’
d=1000= N > 562
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Limitations of Haussler’88 bound

» There are consistent classifiers in the hypothesis space: h
such that E¢,-4;,,(h) = 0

» Dependence on the size of hypothesis space:
What if |H | is too big or H is continuous?

29



Limitation of the bounds

» Until now, we find bounds for two cases:

Haussler’s bound with the assumption 3h € H, E¢qin(h) = 0
Hoeffding’s bound

» fH = {h| h: X = Y} is infinite,
We seek a measure of complexity instead of |H|?

The largest subset of X' for which {' can guarantee zero training
error (regardless of the target function)

VC dimension of H is the size of this subset

30



Definitions

» Dichotomy:
An N-tuple of +1 assigned to samples D, ..., x) € X

» The dichotomies generated by H{ on the data points
x L x (N,

H(xD, ..., xM) = {h(x®, ..., xN)|h € H}

» The growth function of a hypothesis set H is defined
as:

my(N) = max _|H(x®, .., x™)

x(V . x(Nex

31



Shattering a set of instances

» A set xD, ., x(V) is shattered by H iff for every
labeling of these samples there exists some hypotheses in
H consistent with this labeling

(i.e., there exist hypotheses in H that can realize this labeling)

» H is as diverse as can be on this particular sample.

32



Perceptron in a 2-dim feature space
H={wyg+wix; +wyxy,)>0->y=1)}

8]
@

o L
° Q O L
i -y
@ O
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Polynomial bound on mg (k)

» Break point: If no data set of size k can be shattered by H,
then k is said to be a break point for H .

» We can bound mgy (k) for all values of N by a simple
polynomial based on this break point.

» Theorem: If my (k) < 2% for some value k, then:
k-1

mq(N) < z (N) Sauer’s Lemma

: l
1=0
Maximum power is N*~1

34



Break point: Example

» Example: None of 4 points can be shattered by the two-
dimensional perceptron

This puts a significant constraint on # of dichotomies that
can be realized by the perceptron on 5 or more points.
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Growth function example: 1-D intervals
» c:x = {0,1}

» What is VC dimension of: t >
h(z) = —1 " h(z) = +1
Positive rays: W N—H—H—O0—O0—O0—0O
H I (open intervals to right): my, (N) = N + 1
ifx >atheny=1elsey=0
Positive intervals:
H2 (inside intervals):ifa < x < btheny =1else y =0
h(x) =—1 +< h(x) = —5—1>+ h(x) =—1
¥ ¥ » ¥ o © o ¥ 3

my,(N) = (N ;_ 1) +1

36



Generalization bound using growth function

1
Pr[|Eqye (B) — Egrqin(R)| > €] < 4my(2N)e 8° N

Vapnik-Chervonenkis inequality

» With probability at least (1 — §) every h € H satisfies
4
)

8Inm4(2N) + 8In
\ N

Etrue < Etrain T

» In many cases, this bounds will be tighter than the
previous bound for finite hypothesis spaces too.

37



mq,(N) relates to overlaps

Hoeffding Inequality

<

data sets

(a)

38

Union Bound

VC Bound

(c)




Vapnick-Chervonenkis (VC) dimension

» The smaller break point, the tighter bound

» Vapnik-Chervonenkis VC(H): the size of the largest set of
samples that can be shattered by H.

VC(H) is the largest value of N for which mg:(N) = 2V

» In order to prove that VC(H) is k:
There’s at least one set of size k that { can shatter.

And there is no set of k + 1 points that can be shattered.

for all k + 1 points, there exists a labeling that cannot be shattered

39



VC dimension: 1-D intervals

» ¢: X - {0,1}
» What is VC dimension of: h(z) = —1 i o
Positive rays: e e o—0—0—90
H I (open intervals to right): vew,) =1
ifx>atheny=1elsey =20 my, (N) =N +1
Positive intervals:
H2 (inside intervals):ifa < x < btheny =1else y =0
h(x) =—1 +< h(x) = —5—1>+ h(x) =—1
¥ ¥ » ¥ o © o ¥ 3
VC(H,) = 2
my,W) = (V) +1

40



Bound on m4 (k) using VC
» Since k = VC(H) + 1 is a break point for m4(N):

VC(H)

mae(N) < Z ®

(=0

(IX)SN"+1

-

]
o

l

= my(N) < NVCUD 11

41



VC dimension: Perceptron in a 2-D space

@
® O
® @
@
Can be shattered by linear Cannot be shattered by linear
boundaries boundaries

However, we seek the set of points
with the most possible dichotomies
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VC dimension: Perceptron in a 2-D space
» VC(H) = 3

}O\ \< o ®
o o @
[ ]
i —-—
[ ] o

° o A o
° o
L ] . o
0 ]
o) ®

» None of 4 points in a 2-D space can be shattered by perceptron
VC(H) < 3

=>VC(H) =3
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VC of Perceptron
»rd=2=VC =3

» Ingeneral VC =d + 1
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Perceptron for d dimensional inputs

For H ;= linear separating hyper-planes in d dimensions,

The following is a set of N = d + 1 samples in R? that can be
shattered by perceptron

1 0 0 O
1 1 0. O
X=|1 0 1.. O
: 0
.1 0 0. 1 -

X is invertible

45



Perceptron for d dimensional inputs:
Can we shatter this dataset?

yD ] T
» For any y = : = | ¢ | can a vector w be found
y(d+1) +1.
that correctly classifies all the data points:

For w = X~y we have Xw = y and thus sign(Xw) =y

46



Perceptron for d dimensional inputs

» So far we show that, we can shatter these d + 1 data
points, thus we have VC(H) > d + 1

» We also need to show that, we cannot shatter any set
of d + 2 to prove that VC(H) =d + 1

47



For any d + 2 points

y xW)) L x(d+1) x(d+2)

» Since we have more points than dimensions, thus:

Im, x = 2 a,x

n#m where not all the a,’s are zero

48



For any d + 2 points, we cannot reach all

dichotomies
(M) — Z a, x™
nEm
= wlx(M = Z a,wh x™
nEm

» If y™ = sign(wTx™) = sign(a;) then:
a,wlx( >0

» This forces wix™ =Y a . wlx™ > 0

» Therefore, y(™) = Sign(wa(m)) = +1

49



VC of perceptron in d-dimensional space

» We showed that VC >d+ 1 and VC < d + 1 thus VC
=d+1

» In Perceptron the VC is the number of parameters
(Wo, W1, ., Wd)

50



Other examples

» Positive rays

Q ~9-
\/

h(z) = —1 h(x) = +1

» Positive intervals

h(z) = -1 a h(x) = +1 b h(z) = -1

51



VC dimension as degrees of freedom

» Parameters creates degrees of freedom

» VC as effective degrees of freedom
How expressive is this model
Not just the # of parameters

The effective number of parameters
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VC(H) =
» If myr(N) = 2N forall N then VC(H) = oo

» If VC(H) = oo then no matter how large the data set is,
we cannot make generalization conclusions based on the
VC analysis.
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Consistent learning

» Etpyeconverges Evqin When N increases

A\
Etrue
—
f
7~ Etrain -
N
A\
Etrue
\
/ Etrain -
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Vapnik main theorem

» A model is consistent if and only if the H has finite VC
dimension

» A finite VC dimension not only guarantees consistency,
but this is the only way to build a model that generalizes.
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Main result

» No break point = mgy(N) = 2V
» Any break point= mg4-(N) is polynomial in N

Finite VC(H) = f € H will generalize
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VC dimension and learning

» Independent of learning algorithm
» Independent of target function
» Independent of input distribution

Y



Practical issues

» The obtained bounds are loose.

» Although bound is loose, it can be useful for comparing
the generalization of different methods

» In real application, models with lower VC tends to
generalize better
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Practical: how many samples do I need?

» Rule of thumb: requiring N to be at least 10 X VC(H) to
get decent generalization
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LApcLLCU LITTUI

VC vs. bias-variance

E true

generalization error

SE—

E train

in-sample error

Number of Data Points. IV

VC analysis

Etrue = Ep [Etrue(fp)]
Etrain = Ep [Etrain(fp)]
60

Etrue

variance

/ bias

Number of Data Points, N

Expected Error

bias-variance



Summary of PAC bounds
With probability = 1 — 6

» Forallh € H st.Erpgi(R) = 0 h
In|H| + ln%
Etrue (h) <e= ON Finite |
-hypothesis
» Forallh € H space
. n \/lanHI + ln%
Etrye(h) — J < €=
| true (M) tram( )| € ON D B
» Forallh € H
8Ilnmy (2N) + BIn% ~
|Etrue(h) — Etpqin(h)| < € = N Infini
nrinite

hypoth

esis

space
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Using PAC bounds for model selection

» Consider nested model spaces Hq, Hy, ..., Hg, ... in order of

increasing complexity:
Finite hypothesis spaces: |H,| < |H,| < -+ < [Hg| < -+

Infinite hypothesis spaces: VC(H;) < VC(H,) < - < VC(Hg) < -

» For each hypothesis space Hj, we know with high probability
(= 1—6y),forall h € Hy:

Etrue (h) = Etrain (h) + E(Hk)
J

€(Hy) : capacity term that depends on |Hj | or VC (Hy,)

» As complexity k increases, E;.;i, decreases but e(H)
increases (Bias variance tradeoff)
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Model selection by SRM

» SRM finds the subset of functions which minimizes the bound

on the true error (risk
A (risk) VC(H) (ln 2N _ 1) +Iny

VC(H
Etrue (h) < Etrain (h) + EV )
error \
Bound on E;.(h) is : Y
Etrain (h) + E(h) E(h)
e(h)
Capacity term
Etrain
h
Hy

trade-off between hypothesis space complexity

03 and the quality of fitting the training data



Model selection by SRM

» Structural Risk Minimization (SRM):
Within each model space, find the best hypothesis using
Empirical Risk Minimization (ERM):

h = argmin E;p. 4, (h)
heH

Choose model space that minimizes the upper bound on

Etrue:
k = ari%ilin {Etrain(hi) + e(Hp)}

Final hypothesis is h = h

=}
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Summary

» PAC bounds on true error in terms of training error and complexity
of hypothesis space
Bound for perfectly consistent learner (E¢-4in(R™) = 0)
Bound for agnostic learning (Eyqin(h™) > 0)
|H| = o0 = VC dimension
VC provides much tighter bounds in many cases

» Complexity of the classifier depends on number of points that can
be classified exactly

Finite case: Number of hypothesis
Infinite case:VC dimension

» SRM

Bias-Variance tradeoff in learning theory
Model selection using SRM

Bounds are often too loose in practice
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