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Feasibility of learning

3

 Does the training set 𝒟 tell us anything out of 𝒟?

 𝒟 does not tells us something certain about 𝑓 outside of 𝒟

 However, it can tell us something likely about 𝑓 outside of 𝒟

 Probability helps us to find learning theory



Feasibility of learning
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 These two questions:

 Can we make sure 𝐸𝑡𝑟𝑢𝑒(𝑓) is close to 𝐸𝑡𝑟𝑎𝑖𝑛(𝑓)?

 Can we make 𝐸𝑡𝑟𝑎𝑖𝑛(𝑓) small enough?



Generalizability of Learning 

5

 Generalization error is important to us

 Why should doing well on the training set tell us anything

about generalization error?

 Can we relate error on training set to generalization error?

 Which are conditions under which we can actually prove

that learning algorithms will work well?



A related example

6

 Value of 𝜇 is unknown to us

 We pick 𝑁 marbles independently

 The fraction of red marbles in sample =  𝜇

 𝜇Pr picking a red marble = 𝜇

Pr picking a green marble = 1 − 𝜇



Does  𝜇 say anything about 𝜇?
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 No:

 Samples can be mostly green while bin is mostly red

 Yes:

 Sample frequency  𝜇 is likely close to bin frequency 𝜇



What does  𝜇 say about 𝜇?
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 In a big sample (large 𝑁), 𝜈 is probably close to 𝜇 (within

𝜖):

Pr  𝜇 − 𝜇 > 𝜖 ≤ 2𝑒−2𝜖2𝑁

 Valid for all 𝑁 and 𝜖

 Bound does not depend on 𝜇

 Tradeoff: 𝑁, 𝜖, and the bound

 In the other words, “  𝜇 = 𝜇” is Probably Approximately

Correct (PAC)

Hoeffding’s Inequality



Recall: Learning diagram
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𝑐:

𝑐 ≈g

𝑥 1 , … , 𝑥 𝑁
𝑥 1 , 𝑦(1) , … , 𝑥 𝑁 , 𝑦(𝑁)

[Y.S. Abou Mostafa, et. al, “Learning From Data”, 2012]

We assume that some random process proposes instances, and teacher labels 

them (i.e., instances drawn i.i.d. according to a distribution 𝑃(𝒙))



Learning: Problem settings
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 Set of all instances 𝒳

 Set of hypotheses ℋ

 Set of possible target functions 𝐶 = {𝑐:𝒳 → 𝒴}

 Sequence of 𝑁 training instances 𝒟 = 𝒙(𝑛), 𝑐 𝒙(𝑛)

𝑛=1

𝑁

 𝒙 drawn at random from unknown distribution 𝑃 𝒙

 Teacher provides noise-free label 𝑐(𝒙) for it

 Learner observes a set of training examples 𝒟 for target

function 𝑐 and outputs a hypothesis ℎ ∈ ℋ estimating 𝑐



Connection of Hoeffding inequality to 

learning
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 In the bin example, the unknown is 𝜇

 In the learning problem the unknown is a function 𝑐:𝒳
→ 𝒴



Two notions of error
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 Training error of 𝒉: how often ℎ(𝒙) ≠ 𝑐(𝒙) on training

instances 𝐷
𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≡ 𝐸𝒙~𝒟 𝐼 ℎ(𝒙) ≠ 𝑐(𝒙)

=
1

𝒟
 

𝒙∈𝒟

𝐼 ℎ 𝒙 ≠ 𝑐 𝒙

 Test error of 𝒉: how often ℎ(𝒙) ≠ 𝑐(𝒙) over future

instances drawn at random from 𝑃(𝑋)

𝐸𝑡𝑟𝑢𝑒(ℎ) ≡ 𝐸𝒙~𝑃(𝑋) 𝐼 ℎ(𝒙) ≠ 𝑐(𝒙)

Training data

Probability distribution



Notation for learning
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 Both 𝜇 and  𝜇 depend on which hypothesis ℎ

  𝜇 is “in sample” denoted by 𝐸𝑡𝑟𝑎𝑖𝑛(ℎ)

 𝜇 is “out of sample” denoted by 𝐸𝑡𝑟𝑢𝑒(ℎ)

 The Hoeffding inequality becomes:

𝐸𝑡𝑟𝑢𝑒(ℎ)

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ)

Pr 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ − 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖 ≤ 2𝑒−2𝜖2𝑁



Are we done?
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 We cannot use this bound for the learned 𝑓 from data.

 Indeed, ℎ is assumed fixed in this inequality and for this ℎ,

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) generalizes to 𝐸𝑡𝑟𝑢𝑒(ℎ) .

 “verification” of ℎ, not learning

 We need to choose from multiple ℎ's and 𝑓 is not fixed

and instead is found according to the samples.



Hypothesis space as multiple bins
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 Generalizing the bin model to more than one hypothesis:



Hypothesis space: Coin example
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 Question: if you toss a fair coin 10 times, what is the

probability that it will get 10 heads?

 Answer: ≈ 0.1%

 Question: if you toss 1000 fair coins 10 times, what is the

probability that some of them will get 10 heads?

 Answer: ≈ 63%



A bound for the learning problem:

Using Hoeffding inequality
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Pr 𝐸𝑡𝑟𝑢𝑒 𝑓 − 𝐸𝑡𝑟𝑎𝑖𝑛 𝑓 > 𝜖

≤ Pr

𝐸𝑡𝑟𝑢𝑒 ℎ1 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ1 > 𝜖

or 𝐸𝑡𝑟𝑢𝑒 ℎ2 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ2 > 𝜖
…

or 𝐸𝑡𝑟𝑢𝑒 ℎ𝑀 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑀 > 𝜖

≤  
𝑖=1

𝑀

Pr 𝐸𝑡𝑟𝑢𝑒 ℎ𝑖 − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑖 > 𝜖

≤  
𝑖=1

𝑀

2𝑒−2𝜖2𝑁

≤ 2 ℋ 𝑒−2𝜖2𝑁 ℋ = 𝑀



PAC bound:

Using Hoeffding inequality
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Pr 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ > 𝜖 ≤ 2 ℋ 𝑒−2𝜖2𝑁 = 𝛿

⇒ Pr 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≤ 𝜖 ≥ 1 − 𝛿

 With probability at least (1 − 𝛿) every ℎ satisfies

𝐸𝑡𝑟𝑢𝑒 ℎ < 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ +
ln2 ℋ + ln

1
𝛿

2𝑁

Thus, we can we bound 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) that shows the 

amount of overfiting



Sample complexity
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 How many training examples suffice?

 Given 𝜖 and 𝛿, yields sample complexity:

𝑁 ≥
1

2𝜖2
ln 2 ℋ + ln

1

𝛿

 Thus, we found a theory that relates

 Number of training examples

 Complexity of hypothesis space

 Accuracy to which target function is approximated

 Probability that learner outputs a successful hypothesis



An other problem setting
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 Finite number of possible hypothesis (e.g., decision trees 

of depth 𝑑0)

 A learner finds a hypothesis ℎ that is consistent with 

training data

 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 What is the probability that the true error of ℎ will be 

more than 𝜖?

 𝐸𝑡𝑟𝑢𝑒 ℎ ≥ 𝜖



True error of a hypothesis
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 True error of ℎ: probability that it will misclassify an example

drawn at random from 𝑃 𝒙

𝐸𝑡𝑟𝑢𝑒(ℎ) ≡ 𝐸𝒙~𝑃(𝑋) 𝐼 ℎ(𝒙) ≠ 𝑐(𝒙)

Target 𝑐(𝒙)



How likely is a consistent learner to pick a 

bad hypothesis?
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 Bound on the probability that any consistent learner will

output ℎ with 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖

 Theorem [Haussler, 1988]: For target concept 𝑐, ∀ 0 ≤ 𝜖 ≤ 1

 If 𝐻 is finite and 𝒟 contains 𝑁 ≥ 1 independent random samples

Pr ∃ℎ ∈ ℋ,𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0 ∧ 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖

≤ ℋ 𝑒−𝜖𝑁



Haussler bound: Proof
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 What does the theorem mean?

Pr ∃ℎ ∈ ℋ,𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0 ∧ 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖

≤ ℋ 𝑒−𝜖𝑁

 For a fixed ℎ, how likely is a bad hypothesis (i.e., 𝐸𝑡𝑟𝑢𝑒 ℎ
> 𝜖) to label 𝑁 training data points right?

 Pr(ℎ labels one data point correctly|𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖) ≤ (1 − 𝜖)

 Pr(ℎ labels 𝑁 i. i. d data points correctly|𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖) ≤ 1 − 𝜖 𝑁



Haussler bound: Proof (Cont’d)
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 There may be many bad hypotheses ℎ1, … , ℎ𝑘 (i.e., 𝐸𝑡𝑒𝑠𝑡 ℎ1 > 𝜖,

…, 𝐸𝑡𝑒𝑠𝑡 ℎ𝑘 > 𝜖) that are consistent with 𝑁 training data

 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ1 = 0, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ2 = 0, …, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑘 = 0

 How likely is the learner pick a bad hypothesis (𝐸𝑡𝑒𝑠𝑡 ℎ > 𝜖)

among consistent ones {ℎ1, … , ℎ𝑘}?

 Pr ∃ℎ ∈ 𝐻, 𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖 ∧ 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 = Pr 𝐸𝑡𝑟𝑢𝑒 ℎ1 > 𝜖 ∧ 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ1 = 0 or … or 𝐸𝑡𝑟𝑢𝑒 ℎ𝑘 > 𝜖 ∧ 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑘 = 0

 ≤  𝑖=1
𝑘 Pr(𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑖 = 0 ∧ 𝐸𝑡𝑟𝑢𝑒 ℎ𝑖 > 𝜖)

 ≤  𝑖=1
𝑘 Pr(𝐸𝑡𝑟𝑎𝑖𝑛 ℎ𝑖 = 0|𝐸𝑡𝑟𝑢𝑒 ℎ𝑖 > 𝜖) ≤  𝑖=1

𝑘 1 − 𝜖 𝑁

 ≤ ℋ 1 − 𝜖 𝑁

 ≤ ℋ 𝑒−𝜖𝑁

[𝑃 A ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃 𝐵 ]

[𝑘 ≤ ℋ ]

[1 − 𝜖 ≤ 𝑒−𝜖 0 ≤ 𝜖 ≤ 1]



Haussler PAC Bound
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 Theorem [Haussler’88]: Consider finite hypothesis space 𝐻,

training set 𝐷 with m i.i.d. samples, 0 < 𝜖 < 1:

Pr ∃ℎ ∈ ℋ, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0|𝐸𝑡𝑟𝑢𝑒 ℎ > 𝜖 ≤ ℋ 𝑒−𝜖𝑁 ≤ 𝛿

 For any learned hypothesis ℎ ∈ ℋ that is consistent on the

training set 𝒟 (i.e., 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0), with probability at least (1
− 𝛿):

𝐸𝑡𝑟𝑢𝑒(ℎ) ≤ ϵ

Suppose we want this 

probability to be at most 𝛿.



Haussler PAC bound: Sample complexity
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 How many training examples suffice?

 Given 𝜖 and 𝛿, yields sample complexity:

𝑁 ≥
1

𝜖
ln ℋ + ln

1

𝛿

 Given 𝑁 and 𝛿, yields error bound:

𝜖 ≤
1

𝑁
ln ℋ + ln

1

𝛿

There are enough training examples to 
guarantee that any consistent hypothesis 
has error at most 𝜖 with probability 1 − 𝛿.

Error bound linear in 
1

𝑁
and only logarithmic in ℋ .



Example: Conjunction of up to 𝑑 Boolean literals
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 Consider a Boolean classification problem 𝑐:𝒳 → 𝒴

 Hypothesis space: rules that are in the form of conjunction of

up to 𝑑 Boolean literals

 Example: (𝑑 = 5 boolean features)

 if 𝒙 = [0 ? 1 ? ? ] then 𝑦 = 1 else 𝑦 = 0

 How many training examples 𝑁?

 “Any consistent learner using ℋ with probability≥ 0.99 will

output a hypothesis with 𝐸𝑡𝑟𝑢𝑒 ≤ 0.05”?

 𝑑 = 5 ⇒ 𝑁 > 201

 𝑑 = 10 ⇒ 𝑁 > 312

 𝑑 = 100 ⇒ 𝑁 > 2290

¬𝑥1 ∧ 𝑥3

𝛿 = 0.01
𝜖 = 0.05
ℋ = 3𝑑



Example: decision trees of limited depth
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 Consider a Boolean classification problem
 instances: vectors of 𝑑 boolean features

 Hypothesis space: decision trees of depth 2

 How many training examples 𝑚?

 “Any consistent learner using ℋ with probability≥ 0.99 will
output a hypothesis with 𝐸𝑡𝑟𝑢𝑒 ≤ 0.05”?

 𝑑 = 4 ⇒ 𝑚 > 184

 𝑑 = 4 ⇒ 𝑁 > 219

 𝑑 = 10 ⇒ 𝑁 > 281

 𝑑 = 100 ⇒ 𝑁 > 423

 𝑑 = 1000 ⇒ 𝑁 > 562

𝛿 = 0.01
𝜖 = 0.05

ℋ = 16 × 𝑑 × 𝑑 − 1 2



Limitations of Haussler’88 bound
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 There are consistent classifiers in the hypothesis space: ℎ

such that 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 Dependence on the size of hypothesis space:

 What if |ℋ| is too big or ℋ is continuous?



Limitation of the bounds

30

 Until now, we find bounds for two cases:

 Haussler’s bound with the assumption ∃ℎ ∈ ℋ, 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

 Hoeffding’s bound

 If ℋ = {ℎ | ℎ: 𝒳 → 𝒴} is infinite,

 We seek a measure of complexity instead of |ℋ|?

 The largest subset of 𝒳 for which ℋ can guarantee zero training

error (regardless of the target function)

 VC dimension of ℋ is the size of this subset



Definitions
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 Dichotomy:

 An N-tuple of ±1 assigned to samples 𝒙(1), … , 𝒙(𝑁) ∈ 𝒳

 The dichotomies generated by ℋ on the data points

𝒙(1), … , 𝒙(𝑁):

ℋ 𝒙(1), … , 𝒙(𝑁) = ℎ 𝒙(1), … , 𝒙(𝑁) |ℎ ∈ ℋ

 The growth function of a hypothesis set ℋ is defined

as:

𝑚ℋ 𝑁 = max
𝒙(1),…,𝒙(𝑁)∈𝒳

ℋ 𝒙(1), … , 𝒙(𝑁)



Shattering a set of instances
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𝑚ℋ 𝑁 ≤ 2𝑁

 A set 𝒙(1), … , 𝒙(𝑁) is shattered by ℋ iff for every

labeling of these samples there exists some hypotheses in

ℋ consistent with this labeling

 (i.e., there exist hypotheses in ℋ that can realize this labeling)

𝑚ℋ 𝑁 = 2𝑁

 ℋ is as diverse as can be on this particular sample.



Perceptron in a 2-dim feature space
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 𝐻 = {(𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2) > 0 → 𝑦 = 1)}



Polynomial bound on 𝑚ℋ 𝑘
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 Break point: If no data set of size 𝑘 can be shattered by ℋ,

then 𝑘 is said to be a break point for ℋ .

𝑚ℋ 𝑘 < 2𝑘

 We can bound 𝑚ℋ 𝑘 for all values of 𝑁 by a simple

polynomial based on this break point.

 Theorem: If 𝑚ℋ 𝑘 < 2𝑘 for some value 𝑘, then:

𝑚ℋ 𝑁 ≤  

𝑖=0

𝑘−1

𝑁
𝑖

Maximum power is 𝑁𝑘−1

Sauer’s Lemma



Break point: Example
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 Example: None of 4 points can be shattered by the two-

dimensional perceptron

 This puts a significant constraint on # of dichotomies that

can be realized by the perceptron on 5 or more points.



Growth function example: 1-D intervals
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 𝑐: 𝑥 → {0,1}

 What isVC dimension of:

 Positive rays:

 H1(open intervals to right):

 if 𝑥 > 𝑎 then 𝑦 = 1 else 𝑦 = 0

 Positive intervals:

 H2 (inside intervals): if 𝑎 < 𝑥 < 𝑏 then 𝑦 = 1 else 𝑦 = 0

𝑚𝐻1
𝑁 = 𝑁 + 1

𝑚𝐻2
𝑁 =

𝑁 + 1
2

+ 1



Generalization bound using growth function
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Pr 𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ > 𝜖 ≤ 4𝑚ℋ 2𝑁 𝑒−
1
8
𝜖2𝑁

 With probability at least (1 − 𝛿) every ℎ ∈ 𝐻 satisfies

𝐸𝑡𝑟𝑢𝑒 ≤ 𝐸𝑡𝑟𝑎𝑖𝑛 +
8 ln𝑚ℋ 2𝑁 + 8 ln

4
𝛿

𝑁

 In many cases, this bounds will be tighter than the

previous bound for finite hypothesis spaces too.

Vapnik-Chervonenkis inequality



𝑚ℋ 𝑁 relates to overlaps
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Vapnick-Chervonenkis (VC) dimension
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 The smaller break point, the tighter bound

 Vapnik-Chervonenkis 𝑉𝐶(ℋ): the size of the largest set of

samples that can be shattered by ℋ.

 𝑉𝐶(ℋ) is the largest value of 𝑁 for which 𝑚ℋ 𝑁 = 2𝑁

 In order to prove that 𝑉𝐶(ℋ) is 𝑘:

 There’s at least one set of size 𝑘 that ℋ can shatter.

 And there is no set of 𝑘 + 1 points that can be shattered.

 for all 𝑘 + 1 points, there exists a labeling that cannot be shattered



VC dimension: 1-D intervals
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 𝑐: 𝑋 → {0,1}

 What isVC dimension of:

 Positive rays:

 H1(open intervals to right):

 if 𝑥 > 𝑎 then 𝑦 = 1 else 𝑦 = 0

 Positive intervals:

 H2 (inside intervals): if 𝑎 < 𝑥 < 𝑏 then 𝑦 = 1 else 𝑦 = 0

𝑉𝐶 𝐻1 = 1
𝑚𝐻1

𝑁 = 𝑁 + 1

𝑉𝐶 𝐻2 = 2

𝑚𝐻2
𝑁 =

𝑁 + 1
2

+ 1



Bound on 𝑚ℋ 𝑘 using VC
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 Since 𝑘 = 𝑉𝐶(ℋ) + 1 is a break point for 𝑚ℋ 𝑁 :

𝑚ℋ 𝑁 ≤  

𝑖=0

𝑉𝐶 ℋ

𝑁
𝑖

 

𝑖=0

𝑘

𝑁
𝑖

≤ 𝑁𝑘 + 1

⇒ 𝑚ℋ 𝑁 ≤ 𝑁𝑉𝐶 ℋ + 1



VC dimension: Perceptron in a 2-D space
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Can be shattered by linear 

boundaries

Cannot be shattered by linear 

boundaries

However, we seek the set of points 

with the most possible dichotomies 



VC dimension: Perceptron in a 2-D space
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 𝑉𝐶(𝐻) ≥ 3

 None of 4 points in a 2-D space can be shattered by perceptron

 𝑉𝐶(𝐻) ≤ 3

⇒ 𝑉𝐶 𝐻 = 3



VC of Perceptron
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 𝑑 = 2 ⟹ 𝑉𝐶 = 3

 In general 𝑉𝐶 = 𝑑 + 1



45



46



47



For any 𝑑 + 2 points
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 𝒙(1), … , 𝒙 𝑑+1 , 𝒙(𝑑+2)

 Since we have more points than dimensions, thus:

∃𝑚, 𝒙 𝑚 =  

𝑛≠𝑚

𝑎𝑛𝒙
𝑛

where not all the 𝑎𝑛’s are zero



For any 𝑑 + 2 points, we cannot reach all 

dichotomies
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𝒙 𝑚 =  

𝑛≠𝑚

𝑎𝑛𝒙
𝑛

⇒ 𝒘𝑇𝒙 𝑚 =  

𝑛≠𝑚

𝑎𝑛𝒘
𝑇𝒙 𝑛

 If 𝑦(𝑛) = sign 𝒘𝑇𝒙 𝑛 = sign(𝑎𝑖) then:

𝑎𝑛𝒘
𝑇𝒙 𝑛 > 0

 This forces 𝒘𝑇𝒙 𝑚 =  𝑛≠𝑚 𝑎𝑛𝒘
𝑇𝒙 𝑛 > 0

 Therefore, y(m) = sign 𝒘𝑇𝒙 𝑚 = +1



VC of perceptron in d-dimensional space

50

 We showed that 𝑉𝐶 ≥ 𝑑 + 1 and 𝑉𝐶 ≤ 𝑑 + 1 thus 𝑉𝐶
= 𝑑 + 1

 In Perceptron the VC is the number of parameters

(𝑤0, 𝑤1, … , 𝑤𝑑)



Other examples
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 Positive rays

 Positive intervals

𝑎

𝑎 𝑏



VC dimension as degrees of freedom
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 Parameters creates degrees of freedom

 VC as effective degrees of freedom

 How expressive is this model

 Not just the # of parameters

 The effective number of parameters



𝑉𝐶 𝐻 = ∞
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 If 𝑚ℋ 𝑁 = 2𝑁 for all 𝑁 then 𝑉𝐶 𝐻 = ∞

 If 𝑉𝐶 𝐻 = ∞ then no matter how large the data set is,

we cannot make generalization conclusions based on the

VC analysis.



Consistent learning
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 𝐸𝑡𝑟𝑢𝑒converges 𝐸𝑡𝑟𝑎𝑖𝑛 when 𝑁 increases

𝑁

𝑁

𝐸𝑡𝑟𝑎𝑖𝑛

𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑎𝑖𝑛



Vapnik main theorem

55

 A model is consistent if and only if the H has finite VC

dimension

 A finite VC dimension not only guarantees consistency,

but this is the only way to build a model that generalizes.



Main result
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 No break point ⟹ 𝑚ℋ 𝑁 = 2𝑁

 Any break point⟹ 𝑚ℋ 𝑁 is polynomial in 𝑁

 Finite 𝑉𝐶(ℋ) ⇒ 𝑓 ∈ ℋ will generalize



VC dimension and learning
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 Independent of learning algorithm

 Independent of target function

 Independent of input distribution



Practical issues
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 The obtained bounds are loose.

 Although bound is loose, it can be useful for comparing

the generalization of different methods

 In real application, models with lower VC tends to

generalize better



Practical: how many samples do I need?
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 Rule of thumb: requiring 𝑁 to be at least 10 × 𝑉𝐶(𝐻) to

get decent generalization



VC vs. bias-variance
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𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑢𝑒 = 𝐸𝒟 𝐸𝑡𝑟𝑢𝑒 𝑓𝒟

𝐸𝑡𝑟𝑢𝑒

𝐸𝑡𝑟𝑎𝑖𝑛 = 𝐸𝒟 𝐸𝑡𝑟𝑎𝑖𝑛 𝑓𝒟

𝐸𝑡𝑟𝑎𝑖𝑛 𝐸𝑡𝑟𝑎𝑖𝑛



Summary of PAC bounds
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With probability ≥ 1 − 𝛿

 For all ℎ ∈ 𝐻 s.t. 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ = 0

𝐸𝑡𝑟𝑢𝑒 ℎ ≤ 𝜖 =
ln 𝐻 + ln

1
𝛿

2𝑁

 For all ℎ ∈ 𝐻

𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≤ 𝜖 =
ln 2𝐻 + ln

1
𝛿

2𝑁

 For all ℎ ∈ 𝐻

𝐸𝑡𝑟𝑢𝑒 ℎ − 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ ≤ 𝜖 =
8 ln𝑚ℋ 2𝑁 + 8 ln

4
𝛿

𝑁

Finite 

hypothesis

space

Infinite 

hypothesis

space



Using PAC bounds for model selection
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 Consider nested model spaces 𝐻1, 𝐻2, … , 𝐻𝑘 , … in order of

increasing complexity:

 Finite hypothesis spaces: 𝐻1 ≤ 𝐻2 ≤ ⋯ ≤ 𝐻𝑘 ≤ ⋯

 Infinite hypothesis spaces: 𝑉𝐶(𝐻1) ≤ 𝑉𝐶(𝐻2) ≤ ⋯ ≤ 𝑉𝐶(𝐻𝑘) ≤ ⋯

 For each hypothesis space 𝐻𝑘, we know with high probability

(≥ 1 − 𝛿𝑘), for all ℎ ∈ 𝐻𝑘:

𝐸𝑡𝑟𝑢𝑒(ℎ) ≤ 𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) + 𝜖(𝐻𝑘)

 As complexity 𝑘 increases, 𝐸𝑡𝑟𝑎𝑖𝑛 decreases but 𝜖(𝐻𝑘)
increases (Bias variance tradeoff)

𝜖(𝐻𝑘) : capacity term that depends on |𝐻𝑘| or 𝑉𝐶(𝐻𝑘)



Model selection by SRM
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trade-off between hypothesis space complexity 

and the quality of fitting the training data 

 SRM finds the subset of functions which minimizes the bound

on the true error (risk)

error

𝜖(ℎ)
Capacity term

𝐸𝑡𝑟𝑎𝑖𝑛

ℎ

Bound on 𝐸𝑡𝑟𝑢𝑒(ℎ) is

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ) + 𝜖(ℎ)

𝐻4𝐻1 𝐻2 𝐻3

𝐸𝑡𝑟𝑢𝑒 ℎ < 𝐸𝑡𝑟𝑎𝑖𝑛 ℎ +
VC(𝐻) ln

2𝑁
𝑉𝐶(𝐻)

+ 1 + ln
4
𝛿

𝑁

𝜖(ℎ)



Model selection by SRM 
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 Structural Risk Minimization (SRM):

 Within each model space, find the best hypothesis using

Empirical Risk Minimization (ERM):

 ℎ = argmin
ℎ∈𝐻

𝐸𝑡𝑟𝑎𝑖𝑛(ℎ)

 Choose model space that minimizes the upper bound on

𝐸𝑡𝑟𝑢𝑒:

 𝑘 = argmin
𝑘≥1

𝐸𝑡𝑟𝑎𝑖𝑛
 ℎ𝑘 + 𝜖 𝐻𝑘

 Final hypothesis is  ℎ =  ℎ 𝑘



Summary
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 PAC bounds on true error in terms of training error and complexity
of hypothesis space

 Bound for perfectly consistent learner (𝐸𝑡𝑟𝑎𝑖𝑛(ℎ
∗) = 0)

 Bound for agnostic learning (𝐸𝑡𝑟𝑎𝑖𝑛(ℎ
∗) > 0)

 |𝐻| = ∞ ⇒VC dimension

 VC provides much tighter bounds in many cases

 Complexity of the classifier depends on number of points that can
be classified exactly

 Finite case: Number of hypothesis

 Infinite case:VC dimension

 SRM

 Bias-Variance tradeoff in learning theory

 Model selection using SRM

 Bounds are often too loose in practice
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