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Topics

» Linear regression
Error (cost) function
Optimization

Generalization



Regression problem

» The goal is to make (real valued) predictions given

features

» Example: predicting house price from 3 attributes

Size (m?) Age (year) Region Price (10°T)
100 2 5 500
80 25 3 250




Learning problem

» Selecting a hypothesis space

Hypothesis space: a set of mappings from feature vector to
target

» Learning (estimation): optimization of a cost function

Based on the training set D = {(x(i),y(i))}?zl and a cost

function we find (an estimate) f € F of the target function

» Evaluation: we measure how well f generalizes to
unseen examples



Learning problem

» Selecting a hypothesis space

Hypothesis space: a set of mappings from feature vector to
target



Hypothesis space

» Specify the class of functions (e.g., linear)

» We begin by the class of linear functions

easy to extend to generalized linear and so cover more
complex regression functions



Linear regression: hypothesis space

» Univariate y

f:R>R f(x;w) = wyg+ wix

» Multivariate

f:RE> R f(x;w) =wy+wyxg +...waxg

w = [Wo, Wy,...,wy]" are parameters we need to set.



Learning problem

4

» Learning (estimation): optimization of a cost function

Based on the training set D ={(x(i),y(i))}?=1 and a cost

function we find (an estimate) f € F of the target function



Learning algorithm

» Select how to measure the error (i.e. prediction loss)

» Find the minimum of the resulting error or cost function



Learning algorithm

Training Set D

l We need to

—— (1) measure how well f(x; w)

[ Learning ] approximates the target

Algorithm (2) choose w to minimize the error
measure
Wo, W1
iize of _)[ Fx) = fx: w)]) Estin?ated
ouse price

X
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How to measure the error
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Linear regression: univariate example
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Regression: squared loss

» In the SSE cost function, we used squared error as the
prediction loss:

Loss(y,9) = (y — 9)? y=f(xw)

» Cost function (based on the training set):

J(w) = Zn Loss (y(i),f(x(i); w))

=1
_ zi=1 (y(i) — f(x®; W))Z

» Minimizing sum (or mean) of squared errors is a common
approach in curve fitting, neural network, etc.
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Sum of Squares Error (SSE) cost function

](W) = znzl(y(l) — f(x(i); W))Z

» J(w): sum of the squares of the prediction errors on the
training set

» We want to find the best regression function f (x(i) ; w)
equivalently, the best w

» Minimize J(w)

Find optimal f(x) = f(x; W) where W = argmin J(w)
w
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Cost function: univariate example
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This example has been adapted from: Prof. Andrew Ng’s slides




Cost function: univariate example

f e wo,wy) = wp + wyx J(wo, wy)
(for fixed wy,wy, this is a function of x) (function of the parameters wy,w;)
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Cost function: univariate example

f O we,wy) = wy + wix J(wg, wy)

(function of the parameters wy,w;)
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Cost function: univariate example

f(x; wo,wy) = wy + wix J(wo, wy)

(function of the parameters wqy,w;)
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Cost function: univariate example

f(x; wo, wy) = wy + wyx J(wg, wy)

(function of the parameters wgy,w;)
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Cost function optimization: univariate

J(w) = Z-_l(y(i) — wp — wyx®)’

» Necessary conditions for the “optimal” parameter values:

oj(w)
ow, 0
yw) _

5W1
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Optimality conditions: univariate

Jwy=) (O —wo—wix®)°

oj(w) _ Z';Z(y(i) — wo — wyx®)(=x®) = 0

dw,

) - 2112(}’(0 — Wo — Wlx(i))(_l) =0

(9W0

» A systems of 2 linear equations
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Cost function: multivariate

» We have to minimize the empirical squared loss:
n . . 2
Jwy =) (yO - f(xO;w))
i=1

fx;w) =wy +wixg+...Wixg

W = [Wo,Wl,...,Wd]T

w = argmin J (w)
weRd+1
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Cost function and optimal linear model

» Necessary conditions for the “optimal” parameter values:

WwJ(w) =0
» A system of d + 1 linear equations
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Cost function: matrix notation

Jw) =Y (= faOw)

(1) (1)
S 1 x; X4
y 1 (2) (2)
y = . X = xl xd
(n) : :
y
- - (n)
1 xin) o Xg

Jw) = |ly — Xw]||*
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Minimizing cost function

Optimal linear weight vector (for SSE cost function):

Jw) = |ly — Xw]||*

V] (W) = =2X"(y — Xw)

V,Jw)=0=X"Xw=X"y
w=(XTX)"1 X"y
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Minimizing cost function
w=(X"X)"1XxTy
w=XTy
XT=XTx)"1xT

XT is pseudo inverse of X
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Another approach for optimizing the sum
squared error

» lterative approach for solving the following optimization
problem:

J(w) = 2._1@(0 — D, w))?
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Review:
[terative optimization of cost function

» Cost function: J(w)

» Optimization problem: w = argmin J(w)
w

» Steps:
Start from w
Repeat
Update wt to wi*! in order to reduce |
t—t+1

» until we hopefully end up at a minimum
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Review:
Gradient descent
» First-order optimization algorithm to find w* = argmin J(w)

w
Also known as "steepest descent”

» In each step, takes steps proportional to the negative of the
gradient vector of the function at the current point w':

wh =wh —y, V(W)

J(w) decreases fastest if one goes from w' in the direction of —7J(w?)

Assumption: J(w) is defined and differentiable in a neighborhood of a
point wt

Gradient ascent takes steps proportional to (the positive of)
the gradient to find a local maximum of the function
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Review:
Gradient descent

» Minimize J(w)

i Step size
(Learning rate parameter)

wt+1 — Wt _ an](Wt)

dj(w) oJ(w)  9J](w)

ow; = odw, "7 dwy

V] (W) = | |

» If n is small enough, then J(wtt1) < J(wh).

» 1 can be allowed to change at every iteration as 7.
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Review:
Gradient descent disadvantages

» Local minima problem

» However, when | is convex, all local minima are also global
minima = gradient descent can converge to the global
solution.
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Review: Problem of gradient descent with
non-convex cost functions

32 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford)



Review: Problem of gradient descent with
non-convex cost functions

33 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford)



+, cost function

Gradient descent for SSI

» Minimize J(w)

witl = wt — T]VW](Wt)

» J(w):Sum of squares error

J(w) = 2:;1 (y(i) _ f(x(i); W))Z

» Weight update rule for f(x;w) = wlx:

n
witl = wt 4+ Z (ya) _ Wtha)) x(®
=1

l
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Gradient descent for SSE cost function

» Weight update rule: f (x; w) = wlx

n
Wil = wt 4 Z(y(z) — wTx®)x®
=1

Batch mode: each step
considers all training data

» n:too small - gradient descent can be slow.

» : too large - gradient descent can overshoot the
minimum. It may fail to converge, or even diverge.

35



J(wo, wy)

X; Wo, W1) = Wo + WX :
f( 0 W1) 0 1 (function of the parameters wy,w;)
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J(wo, wy)

(function of the parameters wy,w;)
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f(x; wo,wy) = wy + wyx J(wg, wq)

(function of the parameters wy,w;)
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f(x; wo,wy) = wy + wyx J(wg, wq)

(function of the parameters wy,w;)
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Price $ (in 1000s)

f(x; wo,wy) = wy + wyx J(wg, wq)

(function of the parameters wy,w;)
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f(x; wo,wy) = wy + wyx J(wg, wq)

(function of the parameters wy,w;)
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Price $ (in 1000s)
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f(x; wo,wy) = wy + wyx J(wg, wq)

(function of the parameters wy,w;)
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f(x; wo,wy) = wy + wyx J(wg, wq)

(function of the parameters wy,w;)
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Stochastic gradient descent

» Batch techniques process the entire training set in one go

thus they can be computationally costly for large data sets.

» Stochastic gradient descent: when the cost function can
comprise a sum over data points:

n
Jwy =) JOw)
i=1
» Update after presentation of (x(), y(®)):

witl = wt — T’Vw](l)(w)
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Stochastic gradient descent

» Example: Linear regression with SSE cost function
](l) (W) — (y(l) — wa(i))z

witl = wt — TIVW](l) (W)

witl = wt + n(y® — wTx®)x®

Least Mean Squares (LMS)

It is proper for sequential or online learning
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Stochastic gradient descent: online learning

» Sequential learning is also appropriate for real-time
applications

data observations are arriving in a continuous stream

and predictions must be made before seeing all of the data

» The value of n needs to be chosen with care to ensure
that the algorithm converges
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Evaluation and generalization

» Why minimizing the cost function (based on only training data)
while we are interested in the performance on new examples?

n .
min 2 Loss (y(‘), f (x(l) ; H)) —— Empirical loss

6 i=1

» Evaluation: After training, we need to measure how well the

learned prediction function can predicts the target for unseen
examples

48



Training and test performance

» Assumption: training and test examples are drawn independently
at random from the same but unknown distribution.

Each training/test example (x,y) is a sample from joint probability
distribution P(x, y), i.e., (x, y)~P

Empirical (training) loss = %Z’f:l Loss (y(i),f(x(i); 9))

Expected (test) loss =E, ,, {Loss(y, f(x; 0))}

» We minimize empirical loss (on the training data) and expect to
also find an acceptable expected loss

Empirical loss as a proxy for the performance over the whole distribution.
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Linear regression: number of training data
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Linear regression: generalization
» By increasing the number of training examples, will solution be

better?

» Why the mean squared error does not decrease more after
reaching a level?

MSE

80 00 120
Num of Training Data
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Linear regression: types of errors

» Structural error: the error introduced by the limited
function class (infinite training data):

w* = argmin E, , [(y — w'x)?]
w

2
Structural error: Ey ,, [(y — W*Tx) ]

where w* = (wg,-:-,w;) are the optimal linear
regression parameters (infinite training data)
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Linear regression: types of errors

» Approximation error measures how close we can get to the
optimal linear predictions with limited training data:

w* = argmin E ,[(y — w' x)?]
w

n
W= argminZ(y(i) — WTx(i))2
Y=

Approximation error: E, [(W*Tx — WTX)2]

Where W are the parameter estimates based on a small
training set (so themselves are random variables).
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Linear regression: error decomposition

» The expected error can decompose into the sum of
structural and approximation errors

Ex,y[(y o WTx)Z]
= Ey, [(y — w*Tx)zl +E, [(W*Tx — v’i/Tx)2]

» Derivation
Ex,y[(y — WTx)Z] = Ex,y [(y — W*Tx + w*Tx — WTX)ZI
= Ey, [(y - w*Tx)Zl +E, [(W*Tx — WTx)2]
+ 2E,, [(y —w' x)(wx — WTx)]
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Linear regression: error decomposition

» The expected error can decompose into the sum of
structural and approximation errors

Ex,y [(y o WTx)Z]

_ Ex,y [(y . W*Tx)2] +E, [(W*Tx _ WTx)zl

» Derivation
Exyl(y —W'x)?] = Ey, [(y —wix+wx - WTx)ZI
= Ey, [(y — w*Tx)Zl +E, [(W*Tx = WTx)2]

+ 0
Note: Optimality condition for w* give us Ex’y[(y — W*Tx)x] =0
since VwEx,y[(y - WTx)z]lw* =0
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