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Topics

 Linear regression

 Error (cost) function

 Optimization

 Generalization
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Regression problem

 The goal is to make (real valued) predictions given

features

 Example: predicting house price from 3 attributes
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Size (𝑚2) Age (year) Region Price (106T)

100 2 5 500

80 25 3 250

… … … …



Learning problem

 Selecting a hypothesis space

 Hypothesis space: a set of mappings from feature vector to

target

 Learning (estimation): optimization of a cost function

 Based on the training set 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑛
and a cost

function we find (an estimate) 𝑓 ∈ 𝐹 of the target function

 Evaluation: we measure how well  𝑓 generalizes to

unseen examples

4



Learning problem

 Selecting a hypothesis space

 Hypothesis space: a set of mappings from feature vector to

target

 Learning (estimation): optimization of a cost function

 Based on the training set 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑛
and a cost

function we find (an estimate) 𝑓 ∈ 𝐹 of the target function

 Evaluation: we measure how well  𝑓 generalizes to

unseen examples

5



Hypothesis space
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 Specify the class of functions (e.g., linear)

 We begin by the class of linear functions

 easy to extend to generalized linear and so cover more

complex regression functions



Linear regression: hypothesis space

 Univariate

𝑓 ∶ ℝ → ℝ 𝑓(𝑥; 𝒘) = 𝑤0 + 𝑤1𝑥

 Multivariate

𝑓 ∶ ℝ𝑑 → ℝ 𝑓(𝒙; 𝒘) = 𝑤0 + 𝑤1𝑥1 + . . . 𝑤𝑑𝑥𝑑

 𝒘 = 𝑤0, 𝑤1, . . . , 𝑤𝑑
𝑇 are parameters we need to set.
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𝑥

𝑦



Learning problem

 Selecting a hypothesis space

 Hypothesis space: a set of mappings from feature vector to

target

 Learning (estimation): optimization of a cost function

 Based on the training set 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
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and a cost
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Learning algorithm
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 Select how to measure the error (i.e. prediction loss)

 Find the minimum of the resulting error or cost function



Learning algorithm

Training Set 𝐷

Learning

Algorithm

 𝑓 𝑥 = 𝑓(𝑥; 𝒘)Size of 

house

𝑥

Estimated 

price

We need to

(1) measure how well 𝑓(𝑥; 𝒘)
approximates the target

(2) choose 𝒘 to minimize the error 

measure
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𝑤0, 𝑤1



How to measure the error

Squared error: 𝑦 𝑖 − 𝑓 𝑥 𝑖 ; 𝒘
2
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Linear regression: univariate example

Cost function:

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000

𝑦(𝑖) − 𝑓(𝑥 𝑖 ; 𝒘)

𝑥

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝑥; 𝒘)
2

=  
𝑖=1

𝑛

𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 2
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Regression: squared loss

 In the SSE cost function, we used squared error as the

prediction loss:

𝐿𝑜𝑠𝑠 𝑦,  𝑦 = 𝑦 −  𝑦 2

 Cost function (based on the training set):

𝐽 𝒘 =  
𝑖=1

𝑛

𝐿𝑜𝑠𝑠 𝑦 𝑖 , 𝑓 𝒙 𝑖 ; 𝒘

=  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙 𝑖 ; 𝒘
2

 Minimizing sum (or mean) of squared errors is a common

approach in curve fitting, neural network, etc.
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 𝑦 = 𝑓(𝒙; 𝒘)



Sum of Squares Error (SSE) cost function  
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𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2

 𝐽 𝒘 : sum of the squares of the prediction errors on the
training set

 We want to find the best regression function 𝑓 𝒙 𝑖 ; 𝒘
 equivalently, the best 𝒘

 Minimize 𝐽 𝒘
 Find optimal  𝑓 𝒙 = 𝑓 𝒙;  𝒘 where  𝒘 = argmin

𝒘
𝐽 𝒘



Cost function: univariate example
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15 This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example

(for fixed 𝑤0,𝑤1, this is a function of 𝑥) (function of the parameters 𝑤0,𝑤1)
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𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example
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(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example
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(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example
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(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function optimization: univariate

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 2

 Necessary conditions for the “optimal” parameter values:

𝜕𝐽 𝒘

𝜕𝑤0
= 0

𝜕𝐽 𝒘

𝜕𝑤1
= 0
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Optimality conditions: univariate

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 2

 A systems of 2 linear equations

𝜕𝐽 𝒘

𝜕𝑤1
=  

𝑖=1

𝑛

2 𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 −𝑥 𝑖 = 0

𝜕𝐽 𝒘

𝜕𝑤0
=  

𝑖=1

𝑛

2 𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 −1 = 0
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Cost function: multivariate

 We have to minimize the empirical squared loss:

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2

𝑓(𝒙; 𝒘) = 𝑤0 + 𝑤1𝑥1 + . . . 𝑤𝑑𝑥𝑑

𝒘 = 𝑤0, 𝑤1, . . . , 𝑤𝑑
𝑇

 𝒘 = argmin
𝒘∈ℝ𝑑+1

𝐽(𝒘)
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Cost function and optimal linear model 
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 Necessary conditions for the “optimal” parameter values:

𝛻𝒘𝐽 𝒘 = 𝟎

 A system of 𝑑 + 1 linear equations



Cost function: matrix notation

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2

=

=  
𝑖=1

𝑛

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

𝒚 =
𝑦(1)

⋮
𝑦(𝑛)

𝑿 =

1 𝑥1
(1)

⋯ 𝑥𝑑
(1)

1
⋮

𝑥1
(2)

⋮

⋯
⋱

𝑥𝑑
(2)

⋮

1 𝑥1
(𝑛)

⋯ 𝑥𝑑
(𝑛)

𝒘 =

𝑤0

𝑤1

⋮
𝑤𝑑

𝐽 𝒘 = 𝒚 − 𝑿𝒘 2
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Minimizing cost function
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Optimal linear weight vector (for SSE cost function):

𝐽 𝒘 = 𝒚 − 𝑿𝒘 2

𝛻𝒘𝐽 𝒘 = −2𝑿𝑇 𝒚 − 𝑿𝒘

𝛻𝒘𝐽 𝒘 = 𝟎 ⇒ 𝑿𝑇𝑿𝒘 = 𝑿𝑇𝒚

𝒘 = 𝑿𝑇𝑿 −𝟏 𝑿𝑇𝒚



Minimizing cost function
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𝒘 = 𝑿𝑇𝑿 −𝟏 𝑿𝑇𝒚

𝑿† = 𝑿𝑇𝑿 −𝟏𝑿𝑇

𝑿† is pseudo inverse of 𝑿

𝒘 = 𝑿†𝒚



Another approach for optimizing the sum 

squared error 
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 Iterative approach for solving the following optimization

problem:

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2



Review:

Iterative optimization of cost function 
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 Cost function: 𝐽(𝒘)

 Optimization problem:  𝒘 = argm𝑖𝑛
𝒘

𝐽(𝒘)

 Steps:

 Start from 𝒘0

 Repeat

 Update 𝒘𝑡 to 𝒘𝑡+1 in order to reduce 𝐽

 𝑡 ← 𝑡 + 1

 until we hopefully end up at a minimum



Review:

Gradient descent
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 First-order optimization algorithm to find 𝒘∗ = argmin
𝒘

𝐽(𝒘)

 Also known as ”steepest descent”

 In each step, takes steps proportional to the negative of the

gradient vector of the function at the current point 𝒘𝑡:

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡 𝛻 𝐽 𝒘𝑡

 𝐽(𝒘) decreases fastest if one goes from 𝒘𝑡 in the direction of −𝛻𝐽 𝒘𝑡

 Assumption: 𝐽(𝒘) is defined and differentiable in a neighborhood of a

point 𝒘𝑡

Gradient ascent takes steps proportional to (the positive of) 

the gradient to find a local maximum of the function



Review:

Gradient descent
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 Minimize 𝐽(𝒘)

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝒘𝑡)

𝛻𝒘𝐽 𝒘 = [
𝜕𝐽 𝒘

𝜕𝑤1
,
𝜕𝐽 𝒘

𝜕𝑤2
, … ,

𝜕𝐽 𝒘

𝜕𝑤𝑑
]

 If 𝜂 is small enough, then 𝐽 𝒘𝑡+1 ≤ 𝐽 𝒘𝑡 .

 𝜂 can be allowed to change at every iteration as 𝜂𝑡.

Step size

(Learning rate parameter)



Review:

Gradient descent disadvantages
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 Local minima problem

 However, when 𝐽 is convex, all local minima are also global

minima ⇒ gradient descent can converge to the global

solution.



w1

w0

J(w0,w1)

Review: Problem of gradient descent with 

non-convex cost functions

32 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



w0

w1

J(w0,w1)

Review: Problem of gradient descent with 

non-convex cost functions

33 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



Gradient descent for SSE cost function
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 Minimize 𝐽(𝒘)
𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝒘𝑡)

 𝐽(𝒘): Sum of squares error

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙 𝑖 ; 𝒘
2

 Weight update rule for 𝑓 𝒙; 𝒘 = 𝒘𝑇𝒙:

𝒘𝑡+1 = 𝒘𝑡 + 𝜂  

𝑖=1

𝑛

𝑦 𝑖 − 𝒘𝑡𝑇
𝒙 𝑖 𝒙(𝑖)



Gradient descent for SSE cost function
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 Weight update rule: 𝑓 𝒙; 𝒘 = 𝒘𝑇𝒙

𝒘𝑡+1 = 𝒘𝑡 + 𝜂  

𝑖=1

𝑛

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 𝒙(𝑖)

 𝜂: too small → gradient descent can be slow.

 𝜂 : too large → gradient descent can overshoot the

minimum. It may fail to converge, or even diverge.

Batch mode: each step 

considers all training data



(function of the parameters 𝑤0,𝑤1)
𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥

𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 36



(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

37 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

38 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)
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39 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)
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40 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)
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41 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 
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42 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

43 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)
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44 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



Stochastic gradient descent
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 Batch techniques process the entire training set in one go

 thus they can be computationally costly for large data sets.

 Stochastic gradient descent: when the cost function can

comprise a sum over data points:

𝐽(𝒘) =  
𝑖=1

𝑛

𝐽 𝑖 (𝒘)

 Update after presentation of (𝒙(𝑖), 𝑦(𝑖)):

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝑖)(𝒘)



Stochastic gradient descent
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 Example: Linear regression with SSE cost function

𝐽(𝑖)(𝒘) = 𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝑖)(𝒘)

𝒘𝑡+1 = 𝒘𝑡 + 𝜂 𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 𝒙(𝑖)

It is proper for sequential or online learning

Least Mean Squares (LMS)



Stochastic gradient descent: online learning
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 Sequential learning is also appropriate for real-time

applications

 data observations are arriving in a continuous stream

 and predictions must be made before seeing all of the data

 The value of η needs to be chosen with care to ensure

that the algorithm converges



Evaluation and generalization

 Why minimizing the cost function (based on only training data)

while we are interested in the performance on new examples?

min
𝜽

 
𝑖=1

𝑛

𝐿𝑜𝑠𝑠 𝑦(𝑖), 𝑓(𝒙
(𝑖)

; 𝜽)

 Evaluation: After training, we need to measure how well the

learned prediction function can predicts the target for unseen

examples

Empirical loss

48



Training and test performance

 Assumption: training and test examples are drawn independently

at random from the same but unknown distribution.

 Each training/test example (𝒙, 𝑦) is a sample from joint probability

distribution 𝑃 𝒙, 𝑦 , i.e., 𝒙, 𝑦 ~𝑃

Empirical (training) loss =  
1

𝑛
 𝑖=1

𝑛 𝐿𝑜𝑠𝑠 𝑦(𝑖), 𝑓(𝒙
(𝑖)

; 𝜽)

Expected (test) loss =𝐸𝒙,𝑦 𝐿𝑜𝑠𝑠 𝑦, 𝑓(𝒙; 𝜽)

 We minimize empirical loss (on the training data) and expect to

also find an acceptable expected loss

 Empirical loss as a proxy for the performance over the whole distribution.

49



Linear regression: number of training data

50

𝑛 = 10 𝑛 = 20

𝑛 = 50



Linear regression: generalization

 By increasing the number of training examples, will solution be

better?

 Why the mean squared error does not decrease more after

reaching a level?

51



Linear regression: types of errors

 Structural error: the error introduced by the limited

function class (infinite training data):

𝒘∗ = argmin
𝒘

𝐸𝒙,𝑦 𝑦 − 𝒘𝑇𝒙 2

Structural error: 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

 where 𝒘∗ = (𝑤0
∗ , ⋯ , 𝑤𝑑

∗) are the optimal linear

regression parameters (infinite training data)
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Linear regression: types of errors

53

 Approximation error measures how close we can get to the
optimal linear predictions with limited training data:

𝒘∗ = argmin
𝒘

𝐸𝒙,𝑦 𝑦 − 𝒘𝑇𝒙 2

 𝒘 = argmin
𝒘

 

𝑖=1

𝑛

𝑦(𝑖) − 𝒘𝑇𝒙(𝑖) 2

Approximation error: 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

 Where  𝒘 are the parameter estimates based on a small
training set (so themselves are random variables).



Linear regression: error decomposition

 The expected error can decompose into the sum of

structural and approximation errors

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

 Derivation

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2 = 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 + 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

+ 2𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙

54



Linear regression: error decomposition

 The expected error can decompose into the sum of

structural and approximation errors

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

 Derivation

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2 = 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 + 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

+ 2𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
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Note: Optimality condition for 𝒘∗ give us 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 𝒙 = 0

since 𝛻𝒘𝐸𝒙,𝑦 𝑦 − 𝒘𝑇𝒙 2  𝒘∗ = 0


