Linear Regression CE-717: Machine Learning Sharif University of Technology

M. Soleymani Fall 2016

Topics

- Linear regression
 - Error (cost) function
 - Optimization
 - Generalization

Regression problem

- The goal is to make (real valued) predictions given features
- Example: predicting house price from 3 attributes

Size (m ²)	Age (year)	Region	Price $(10^6 T)$
100	2	5	500
80	25	3	250
	•••		•••

Learning problem

Selecting a hypothesis space

 Hypothesis space: a set of mappings from feature vector to target

• Learning (estimation): optimization of a cost function

- Based on the training set $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ and a cost function we find (an estimate) $f \in F$ of the target function
- **Evaluation**: we measure how well \hat{f} generalizes to unseen examples

Learning problem

Selecting a hypothesis space

 Hypothesis space: a set of mappings from feature vector to target

Learning (estimation): optimization of a cost function
 Based on the training set D = {(x⁽ⁱ⁾, y⁽ⁱ⁾)}ⁿ_{i-1} and a cost

- function we find (an estimate) $f \in F$ of the target function
- Evaluation: we measure how well \hat{f} generalizes to unseen examples

Hypothesis space

Specify the class of functions (e.g., linear)

We begin by the class of linear functions

easy to extend to generalized linear and so cover more complex regression functions

Linear regression: hypothesis space

Univariate

$$f: \mathbb{R} \to \mathbb{R} \quad f(x; w) = w_0 + w_1 x$$

y

X

Multivariate

$$f : \mathbb{R}^d \to \mathbb{R} \ f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \dots w_d x_d$$

 $\boldsymbol{w} = [w_0, w_1, \dots, w_d]^T$ are parameters we need to set.

Learning problem

- Selecting a hypothesis space
 - Hypothesis space: a set of mappings from feature vector to target

• Learning (estimation): optimization of a cost function

- Based on the training set $D = \{(x^{(i)}, y^{(i)})\}_{i=1}^n$ and a cost function we find (an estimate) $f \in F$ of the target function
- Evaluation: we measure how well \hat{f} generalizes to unseen examples

Learning algorithm

Select how to measure the error (i.e. prediction loss)

Find the minimum of the resulting error or cost function

Learning algorithm

How to measure the error

Squared error:
$$(y^{(i)} - f(x^{(i)}; w))^2$$

Linear regression: univariate example

Cost function:

$$J(\mathbf{w}) = \sum_{i=1}^{n} (y^{(i)} - f(x; \mathbf{w}))^{2}$$
$$= \sum_{i=1}^{n} (y^{(i)} - w_{0} - w_{1}x^{(i)})^{2}$$

Regression: squared loss

In the SSE cost function, we used squared error as the prediction loss:

$$Loss(y, \hat{y}) = (y - \hat{y})^2 \qquad \hat{y} = f(x; w)$$

- Cost function (based on the training set): $J(w) = \sum_{i=1}^{n} Loss\left(y^{(i)}, f(x^{(i)}; w)\right)$ $= \sum_{i=1}^{n} \left(y^{(i)} - f(x^{(i)}; w)\right)^{2}$
- Minimizing sum (or mean) of squared errors is a common approach in curve fitting, neural network, etc.

Sum of Squares Error (SSE) cost function

$$J(w) = \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}; w))^{2}$$

- J(w): sum of the squares of the prediction errors on the training set
- We want to find the best regression function f(x⁽ⁱ⁾; w)
 equivalently, the best w
- Minimize J(w)
 Find optimal f(x) = f(x; w) where w = argmin J(w)

¹⁵ This example has been adapted from: Prof. Andrew Ng's slides

 $f(x; w_0, w_1) = w_0 + w_1 x$

16 This example has been adapted from: Prof. Andrew Ng's slides

$$f(x; w_0, w_1) = w_0 + w_1 x$$

 $J(w_0, w_1)$

¹⁷ This example has been adapted from: Prof. Andrew Ng's slides

 $f(x; w_0, w_1) = w_0 + w_1 x$

 $J(w_0, w_1)$

¹⁸ This example has been adapted from: Prof. Andrew Ng's slides

 $f(x; w_0, w_1) = w_0 + w_1 x$

 $J(w_0, w_1)$

¹⁹ This example has been adapted from: Prof. Andrew Ng's slides

Cost function optimization: univariate

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - w_0 - w_1 x^{(i)} \right)^2$$

Necessary conditions for the "optimal" parameter values:

$$\frac{\partial J(\boldsymbol{w})}{\partial w_0} = 0$$
$$\frac{\partial J(\boldsymbol{w})}{\partial w_1} = 0$$

Optimality conditions: univariate

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - w_0 - w_1 x^{(i)} \right)^2$$

$$\frac{\partial J(w)}{\partial w_1} = \sum_{i=1}^n 2(y^{(i)} - w_0 - w_1 x^{(i)})(-x^{(i)}) = 0$$

$$\frac{\partial J(w)}{\partial w_0} = \sum_{i=1}^n 2(y^{(i)} - w_0 - w_1 x^{(i)})(-1) = 0$$

A systems of 2 linear equations

Cost function: multivariate

We have to minimize the empirical squared loss:

$$J(w) = \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}; w))^{2}$$

$$f(\boldsymbol{x}; \boldsymbol{w}) = w_0 + w_1 x_1 + \dots + w_d x_d$$

$$\boldsymbol{w} = [w_0, w_1, \dots, w_d]^T$$

 $\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w} \in \mathbb{R}^{d+1}}{\operatorname{argmin}} J(\boldsymbol{w})$

Cost function and optimal linear model

Necessary conditions for the "optimal" parameter values:

$$\nabla_w J(w) = \mathbf{0}$$

• A system of d + 1 linear equations

Cost function: matrix notation

$$J(w) = \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}; w))^{2} =$$
$$= \sum_{i=1}^{n} (y^{(i)} - w^{T} x^{(i)})^{2}$$

$$\boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ 1 & x_1^{(2)} & \cdots & x_d^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_1^{(n)} & \cdots & x_d^{(n)} \end{bmatrix} \quad \boldsymbol{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_d \end{bmatrix}$$

 $J(\boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|^2$

Minimizing cost function

Optimal linear weight vector (for SSE cost function):

$$J(\boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|^2$$

$$\nabla_{w}J(w) = -2X^{T}(y - Xw)$$

$$\nabla_{w} J(w) = \mathbf{0} \Rightarrow X^{T} X w = X^{T} y$$
$$w = (X^{T} X)^{-1} X^{T} y$$

Minimizing cost function

$$w = (X^T X)^{-1} X^T y$$

$$w = X^{\dagger}y$$

 $X^{\dagger} = (X^{T}X)^{-1}X^{T}$
 X^{\dagger} is pseudo inverse of X

Another approach for optimizing the sum squared error

Iterative approach for solving the following optimization problem:

$$J(w) = \sum_{i=1}^{n} (y^{(i)} - f(x^{(i)}; w))^{2}$$

Review:

Iterative optimization of cost function

- Cost function: J(w)
- Optimization problem: $\hat{w} = \arg \min J(w)$
- Steps:
 - Start from w^0
 - Repeat
 - Update w^t to w^{t+1} in order to reduce J
 - ▶ $t \leftarrow t + 1$
 - until we hopefully end up at a minimum

Review: Gradient descent

- First-order optimization algorithm to find $w^* = \operatorname{argmin} J(w)$
 - Also known as "steepest descent"
- In each step, takes steps proportional to the negative of the gradient vector of the function at the current point w^t :

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - \gamma_t \, \nabla J(\boldsymbol{w}^t)$$

- J(w) decreases fastest if one goes from w^t in the direction of $-\nabla J(w^t)$
- Assumption: J(w) is defined and differentiable in a neighborhood of a point w^t

Gradient ascent takes steps proportional to (the positive of) the gradient to find a local maximum of the function

Review: Gradient descent

- Minimize J(w) $w^{t+1} = w^t - \eta \nabla_w J(w^t)$ $\nabla_w J(w) = \left[\frac{\partial J(w)}{\partial w_1}, \frac{\partial J(w)}{\partial w_2}, \dots, \frac{\partial J(w)}{\partial w_d}\right]$
- If η is small enough, then $J(w^{t+1}) \leq J(w^t)$.
- η can be allowed to change at every iteration as η_t .

Review: Gradient descent disadvantages

- Local minima problem
- However, when J is convex, all local minima are also global minima ⇒ gradient descent can converge to the global solution.

Review: Problem of gradient descent with non-convex cost functions

³² This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

Review: Problem of gradient descent with non-convex cost functions

³³ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

Gradient descent for SSE cost function

• Minimize J(w) $w^{t+1} = w^t - \eta \nabla_w J(w^t)$

• J(w): Sum of squares error $J(w) = \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}; w) \right)^2$

• Weight update rule for $f(x; w) = w^T x$:

$$w^{t+1} = w^{t} + \eta \sum_{i=1}^{n} \left(y^{(i)} - w^{t^{T}} x^{(i)} \right) x^{(i)}$$

Gradient descent for SSE cost function

• Weight update rule: $f(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x}$

$$w^{t+1} = w^t + \eta \sum_{i=1}^n (y^{(i)} - w^T x^{(i)}) x^{(i)}$$

Batch mode: each step considers all training data

- ▶ η : too small \rightarrow gradient descent can be slow.
- η: too large → gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

³⁶ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

³⁷ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

³⁸ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

³⁹ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

⁴⁰ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

⁴¹ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

⁴² This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

⁴³ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

⁴⁴ This example has been adopted from: Prof. Ng's slides (ML Online Course, Stanford)

Stochastic gradient descent

- Batch techniques process the entire training set in one go
 - thus they can be computationally costly for large data sets.
- Stochastic gradient descent: when the cost function can comprise a sum over data points:

$$J(\boldsymbol{w}) = \sum_{i=1}^{n} J^{(i)}(\boldsymbol{w})$$

• Update after presentation of $(x^{(i)}, y^{(i)})$:

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - \eta \nabla_{\boldsymbol{w}} J^{(i)}(\boldsymbol{w})$$

Stochastic gradient descent

Example: Linear regression with SSE cost function

$$J^{(i)}(\boldsymbol{w}) = \left(y^{(i)} - \boldsymbol{w}^T \boldsymbol{x}^{(i)}\right)^2$$

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t - \eta \nabla_{\boldsymbol{w}} J^{(i)}(\boldsymbol{w})$$

$$\boldsymbol{w}^{t+1} = \boldsymbol{w}^t + \eta (\boldsymbol{y}^{(i)} - \boldsymbol{w}^T \boldsymbol{x}^{(i)}) \boldsymbol{x}^{(i)}$$

Least Mean Squares (LMS)

It is proper for sequential or online learning

Stochastic gradient descent: online learning

- Sequential learning is also appropriate for real-time applications
 - data observations are arriving in a continuous stream
 - and predictions must be made before seeing all of the data
- The value of η needs to be chosen with care to ensure that the algorithm converges

Evaluation and generalization

Why minimizing the cost function (based on only training data) while we are interested in the performance on new examples?

$$\min_{\boldsymbol{\theta}} \sum_{i=1}^{n} Loss\left(y^{(i)}, f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\right) \longrightarrow \text{Empirical loss}$$

• Evaluation: After training, we need to measure how well the learned prediction function can predicts the target for unseen examples

Training and test performance

- Assumption: training and test examples are drawn independently at random from the same but unknown distribution.
 - Each training/test example (x, y) is a sample from joint probability distribution P(x, y), i.e., $(x, y) \sim P$

Empirical (training) loss = $\frac{1}{n} \sum_{i=1}^{n} Loss\left(y^{(i)}, f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\right)$ **Expected (test) loss** = $E_{\boldsymbol{x}, \boldsymbol{y}} \{Loss(\boldsymbol{y}, f(\boldsymbol{x}; \boldsymbol{\theta}))\}$

- We minimize empirical loss (on the training data) and expect to also find an acceptable expected loss
 - Empirical loss as a proxy for the performance over the whole distribution.

Linear regression: number of training data

Linear regression: generalization

- By increasing the number of training examples, will solution be better?
- Why the mean squared error does not decrease more after reaching a level?

Linear regression: types of errors

Structural error: the error introduced by the limited function class (infinite training data):

$$\boldsymbol{w}^{*} = \underset{\boldsymbol{w}}{\operatorname{argmin}} E_{\boldsymbol{x},\boldsymbol{y}}[(\boldsymbol{y} - \boldsymbol{w}^{T}\boldsymbol{x})^{2}]$$

Structural error: $E_{\boldsymbol{x},\boldsymbol{y}}\left[\left(\boldsymbol{y} - \boldsymbol{w}^{*T}\boldsymbol{x}\right)^{2}\right]$

where $w^* = (w_0^*, \dots, w_d^*)$ are the optimal linear regression parameters (infinite training data)

Linear regression: types of errors

Approximation error measures how close we can get to the optimal linear predictions with limited training data:

$$\boldsymbol{w}^* = \underset{\boldsymbol{w}}{\operatorname{argmin}} E_{\boldsymbol{x},\boldsymbol{y}}[(\boldsymbol{y} - \boldsymbol{w}^T \boldsymbol{x})^2]$$

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i=1}^{n} (y^{(i)} - \boldsymbol{w}^{T} \boldsymbol{x}^{(i)})^{2}$$

Approximation error:
$$E_{\boldsymbol{x}}\left[\left(\boldsymbol{w}^{*T}\boldsymbol{x}-\boldsymbol{\widehat{w}}^{T}\boldsymbol{x}\right)^{2}\right]$$

Where \widehat{w} are the parameter estimates based on a small training set (so themselves are random variables).

Linear regression: error decomposition

The expected error can decompose into the sum of structural and approximation errors

$$E_{\boldsymbol{x},\boldsymbol{y}}[(\boldsymbol{y}-\boldsymbol{\widehat{w}}^{T}\boldsymbol{x})^{2}] = E_{\boldsymbol{x},\boldsymbol{y}}\left[\left(\boldsymbol{y}-\boldsymbol{w}^{*T}\boldsymbol{x}\right)^{2}\right] + E_{\boldsymbol{x}}\left[\left(\boldsymbol{w}^{*T}\boldsymbol{x}-\boldsymbol{\widehat{w}}^{T}\boldsymbol{x}\right)^{2}\right]$$

Derivation

$$E_{x,y}[(y - \widehat{w}^T x)^2] = E_{x,y}\left[\left(y - w^{*T}x + w^{*T}x - \widehat{w}^T x\right)^2\right]$$

= $E_{x,y}\left[\left(y - w^{*T}x\right)^2\right] + E_x\left[\left(w^{*T}x - \widehat{w}^T x\right)^2\right]$
+ $2E_{x,y}\left[\left(y - w^{*T}x\right)\left(w^{*T}x - \widehat{w}^T x\right)\right]$

Linear regression: error decomposition

The expected error can decompose into the sum of structural and approximation errors

$$E_{\boldsymbol{x},\boldsymbol{y}}[(\boldsymbol{y}-\boldsymbol{\widehat{w}}^{T}\boldsymbol{x})^{2}]$$

= $E_{\boldsymbol{x},\boldsymbol{y}}\left[\left(\boldsymbol{y}-\boldsymbol{w}^{*T}\boldsymbol{x}\right)^{2}\right] + E_{\boldsymbol{x}}\left[\left(\boldsymbol{w}^{*T}\boldsymbol{x}-\boldsymbol{\widehat{w}}^{T}\boldsymbol{x}\right)^{2}\right]$

Derivation

$$E_{x,y}[(y - \widehat{w}^T x)^2] = E_{x,y}\left[\left(y - w^{*T}x + w^{*T}x - \widehat{w}^T x\right)^2\right]$$

= $E_{x,y}\left[\left(y - w^{*T}x\right)^2\right] + E_x\left[\left(w^{*T}x - \widehat{w}^T x\right)^2\right]$
+ 0
Note: Optimality condition for w^* give us $E_{x,y}\left[\left(y - w^{*T}x\right)^2\right]$

Note: Optimality condition for w^* give us $E_{x,y}[(y - w^{*T}x)x] = 0$ since $\nabla_w E_{x,y}[(y - w^Tx)^2]|_{w^*} = 0$