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Topics

 Linear regression

 Error (cost) function

 Optimization

 Generalization
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Regression problem

 The goal is to make (real valued) predictions given

features

 Example: predicting house price from 3 attributes
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Size (𝑚2) Age (year) Region Price (106T)

100 2 5 500

80 25 3 250

… … … …



Learning problem

 Selecting a hypothesis space

 Hypothesis space: a set of mappings from feature vector to

target

 Learning (estimation): optimization of a cost function

 Based on the training set 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑛
and a cost

function we find (an estimate) 𝑓 ∈ 𝐹 of the target function

 Evaluation: we measure how well  𝑓 generalizes to

unseen examples
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Hypothesis space
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 Specify the class of functions (e.g., linear)

 We begin by the class of linear functions

 easy to extend to generalized linear and so cover more

complex regression functions



Linear regression: hypothesis space

 Univariate

𝑓 ∶ ℝ → ℝ 𝑓(𝑥; 𝒘) = 𝑤0 + 𝑤1𝑥

 Multivariate

𝑓 ∶ ℝ𝑑 → ℝ 𝑓(𝒙; 𝒘) = 𝑤0 + 𝑤1𝑥1 + . . . 𝑤𝑑𝑥𝑑

 𝒘 = 𝑤0, 𝑤1, . . . , 𝑤𝑑
𝑇 are parameters we need to set.

7

𝑥

𝑦
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Learning algorithm
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 Select how to measure the error (i.e. prediction loss)

 Find the minimum of the resulting error or cost function



Learning algorithm

Training Set 𝐷

Learning

Algorithm

 𝑓 𝑥 = 𝑓(𝑥; 𝒘)Size of 

house

𝑥

Estimated 

price

We need to

(1) measure how well 𝑓(𝑥; 𝒘)
approximates the target

(2) choose 𝒘 to minimize the error 

measure
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𝑤0, 𝑤1



How to measure the error

Squared error: 𝑦 𝑖 − 𝑓 𝑥 𝑖 ; 𝒘
2
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Linear regression: univariate example

Cost function:
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𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝑥; 𝒘)
2

=  
𝑖=1

𝑛

𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 2
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Regression: squared loss

 In the SSE cost function, we used squared error as the

prediction loss:

𝐿𝑜𝑠𝑠 𝑦,  𝑦 = 𝑦 −  𝑦 2

 Cost function (based on the training set):

𝐽 𝒘 =  
𝑖=1

𝑛

𝐿𝑜𝑠𝑠 𝑦 𝑖 , 𝑓 𝒙 𝑖 ; 𝒘

=  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙 𝑖 ; 𝒘
2

 Minimizing sum (or mean) of squared errors is a common

approach in curve fitting, neural network, etc.
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 𝑦 = 𝑓(𝒙; 𝒘)



Sum of Squares Error (SSE) cost function  
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𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2

 𝐽 𝒘 : sum of the squares of the prediction errors on the
training set

 We want to find the best regression function 𝑓 𝒙 𝑖 ; 𝒘
 equivalently, the best 𝒘

 Minimize 𝐽 𝒘
 Find optimal  𝑓 𝒙 = 𝑓 𝒙;  𝒘 where  𝒘 = argmin

𝒘
𝐽 𝒘



Cost function: univariate example
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15 This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example

(for fixed 𝑤0,𝑤1, this is a function of 𝑥) (function of the parameters 𝑤0,𝑤1)
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𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example
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(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example
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(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function: univariate example
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(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adapted from: Prof. Andrew Ng’s slides



Cost function optimization: univariate

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 2

 Necessary conditions for the “optimal” parameter values:

𝜕𝐽 𝒘

𝜕𝑤0
= 0

𝜕𝐽 𝒘

𝜕𝑤1
= 0
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Optimality conditions: univariate

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 2

 A systems of 2 linear equations

𝜕𝐽 𝒘

𝜕𝑤1
=  

𝑖=1

𝑛

2 𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 −𝑥 𝑖 = 0

𝜕𝐽 𝒘

𝜕𝑤0
=  

𝑖=1

𝑛

2 𝑦 𝑖 − 𝑤0 − 𝑤1𝑥 𝑖 −1 = 0
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Cost function: multivariate

 We have to minimize the empirical squared loss:

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2

𝑓(𝒙; 𝒘) = 𝑤0 + 𝑤1𝑥1 + . . . 𝑤𝑑𝑥𝑑

𝒘 = 𝑤0, 𝑤1, . . . , 𝑤𝑑
𝑇

 𝒘 = argmin
𝒘∈ℝ𝑑+1

𝐽(𝒘)
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Cost function and optimal linear model 
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 Necessary conditions for the “optimal” parameter values:

𝛻𝒘𝐽 𝒘 = 𝟎

 A system of 𝑑 + 1 linear equations



Cost function: matrix notation

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2

=

=  
𝑖=1

𝑛

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

𝒚 =
𝑦(1)

⋮
𝑦(𝑛)

𝑿 =

1 𝑥1
(1)

⋯ 𝑥𝑑
(1)

1
⋮

𝑥1
(2)

⋮

⋯
⋱

𝑥𝑑
(2)

⋮

1 𝑥1
(𝑛)

⋯ 𝑥𝑑
(𝑛)

𝒘 =

𝑤0

𝑤1

⋮
𝑤𝑑

𝐽 𝒘 = 𝒚 − 𝑿𝒘 2
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Minimizing cost function
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Optimal linear weight vector (for SSE cost function):

𝐽 𝒘 = 𝒚 − 𝑿𝒘 2

𝛻𝒘𝐽 𝒘 = −2𝑿𝑇 𝒚 − 𝑿𝒘

𝛻𝒘𝐽 𝒘 = 𝟎 ⇒ 𝑿𝑇𝑿𝒘 = 𝑿𝑇𝒚

𝒘 = 𝑿𝑇𝑿 −𝟏 𝑿𝑇𝒚



Minimizing cost function
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𝒘 = 𝑿𝑇𝑿 −𝟏 𝑿𝑇𝒚

𝑿† = 𝑿𝑇𝑿 −𝟏𝑿𝑇

𝑿† is pseudo inverse of 𝑿

𝒘 = 𝑿†𝒚



Another approach for optimizing the sum 

squared error 
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 Iterative approach for solving the following optimization

problem:

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓(𝒙 𝑖 ; 𝒘)
2



Review:

Iterative optimization of cost function 
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 Cost function: 𝐽(𝒘)

 Optimization problem:  𝒘 = argm𝑖𝑛
𝒘

𝐽(𝒘)

 Steps:

 Start from 𝒘0

 Repeat

 Update 𝒘𝑡 to 𝒘𝑡+1 in order to reduce 𝐽

 𝑡 ← 𝑡 + 1

 until we hopefully end up at a minimum



Review:

Gradient descent
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 First-order optimization algorithm to find 𝒘∗ = argmin
𝒘

𝐽(𝒘)

 Also known as ”steepest descent”

 In each step, takes steps proportional to the negative of the

gradient vector of the function at the current point 𝒘𝑡:

𝒘𝑡+1 = 𝒘𝑡 − 𝛾𝑡 𝛻 𝐽 𝒘𝑡

 𝐽(𝒘) decreases fastest if one goes from 𝒘𝑡 in the direction of −𝛻𝐽 𝒘𝑡

 Assumption: 𝐽(𝒘) is defined and differentiable in a neighborhood of a

point 𝒘𝑡

Gradient ascent takes steps proportional to (the positive of) 

the gradient to find a local maximum of the function



Review:

Gradient descent
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 Minimize 𝐽(𝒘)

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝒘𝑡)

𝛻𝒘𝐽 𝒘 = [
𝜕𝐽 𝒘

𝜕𝑤1
,
𝜕𝐽 𝒘

𝜕𝑤2
, … ,

𝜕𝐽 𝒘

𝜕𝑤𝑑
]

 If 𝜂 is small enough, then 𝐽 𝒘𝑡+1 ≤ 𝐽 𝒘𝑡 .

 𝜂 can be allowed to change at every iteration as 𝜂𝑡.

Step size

(Learning rate parameter)



Review:

Gradient descent disadvantages
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 Local minima problem

 However, when 𝐽 is convex, all local minima are also global

minima ⇒ gradient descent can converge to the global

solution.



w1

w0

J(w0,w1)

Review: Problem of gradient descent with 

non-convex cost functions

32 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



w0
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Review: Problem of gradient descent with 

non-convex cost functions

33 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



Gradient descent for SSE cost function

34

 Minimize 𝐽(𝒘)
𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝒘𝑡)

 𝐽(𝒘): Sum of squares error

𝐽 𝒘 =  
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙 𝑖 ; 𝒘
2

 Weight update rule for 𝑓 𝒙; 𝒘 = 𝒘𝑇𝒙:

𝒘𝑡+1 = 𝒘𝑡 + 𝜂  

𝑖=1

𝑛

𝑦 𝑖 − 𝒘𝑡𝑇
𝒙 𝑖 𝒙(𝑖)



Gradient descent for SSE cost function
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 Weight update rule: 𝑓 𝒙; 𝒘 = 𝒘𝑇𝒙

𝒘𝑡+1 = 𝒘𝑡 + 𝜂  

𝑖=1

𝑛

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 𝒙(𝑖)

 𝜂: too small → gradient descent can be slow.

 𝜂 : too large → gradient descent can overshoot the

minimum. It may fail to converge, or even diverge.

Batch mode: each step 

considers all training data



(function of the parameters 𝑤0,𝑤1)
𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥

𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 36



(function of the parameters 𝑤0,𝑤1)

𝑓 𝑥; 𝑤0, 𝑤1 = 𝑤0 + 𝑤1𝑥 𝐽(𝑤0, 𝑤1)

𝑤0

𝑤
1

37 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 
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38 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 
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39 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)
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40 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



(function of the parameters 𝑤0,𝑤1)
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41 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 
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42 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 
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44 This example has been adopted from: Prof. Ng’s slides (ML Online Course, Stanford) 



Stochastic gradient descent

45

 Batch techniques process the entire training set in one go

 thus they can be computationally costly for large data sets.

 Stochastic gradient descent: when the cost function can

comprise a sum over data points:

𝐽(𝒘) =  
𝑖=1

𝑛

𝐽 𝑖 (𝒘)

 Update after presentation of (𝒙(𝑖), 𝑦(𝑖)):

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝑖)(𝒘)



Stochastic gradient descent

46

 Example: Linear regression with SSE cost function

𝐽(𝑖)(𝒘) = 𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽(𝑖)(𝒘)

𝒘𝑡+1 = 𝒘𝑡 + 𝜂 𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 𝒙(𝑖)

It is proper for sequential or online learning

Least Mean Squares (LMS)



Stochastic gradient descent: online learning
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 Sequential learning is also appropriate for real-time

applications

 data observations are arriving in a continuous stream

 and predictions must be made before seeing all of the data

 The value of η needs to be chosen with care to ensure

that the algorithm converges



Evaluation and generalization

 Why minimizing the cost function (based on only training data)

while we are interested in the performance on new examples?

min
𝜽

 
𝑖=1

𝑛

𝐿𝑜𝑠𝑠 𝑦(𝑖), 𝑓(𝒙
(𝑖)

; 𝜽)

 Evaluation: After training, we need to measure how well the

learned prediction function can predicts the target for unseen

examples

Empirical loss

48



Training and test performance

 Assumption: training and test examples are drawn independently

at random from the same but unknown distribution.

 Each training/test example (𝒙, 𝑦) is a sample from joint probability

distribution 𝑃 𝒙, 𝑦 , i.e., 𝒙, 𝑦 ~𝑃

Empirical (training) loss =  
1

𝑛
 𝑖=1

𝑛 𝐿𝑜𝑠𝑠 𝑦(𝑖), 𝑓(𝒙
(𝑖)

; 𝜽)

Expected (test) loss =𝐸𝒙,𝑦 𝐿𝑜𝑠𝑠 𝑦, 𝑓(𝒙; 𝜽)

 We minimize empirical loss (on the training data) and expect to

also find an acceptable expected loss

 Empirical loss as a proxy for the performance over the whole distribution.

49



Linear regression: number of training data

50

𝑛 = 10 𝑛 = 20

𝑛 = 50



Linear regression: generalization

 By increasing the number of training examples, will solution be

better?

 Why the mean squared error does not decrease more after

reaching a level?

51



Linear regression: types of errors

 Structural error: the error introduced by the limited

function class (infinite training data):

𝒘∗ = argmin
𝒘

𝐸𝒙,𝑦 𝑦 − 𝒘𝑇𝒙 2

Structural error: 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

 where 𝒘∗ = (𝑤0
∗ , ⋯ , 𝑤𝑑

∗) are the optimal linear

regression parameters (infinite training data)



52



Linear regression: types of errors
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 Approximation error measures how close we can get to the
optimal linear predictions with limited training data:

𝒘∗ = argmin
𝒘

𝐸𝒙,𝑦 𝑦 − 𝒘𝑇𝒙 2

 𝒘 = argmin
𝒘

 

𝑖=1

𝑛

𝑦(𝑖) − 𝒘𝑇𝒙(𝑖) 2

Approximation error: 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

 Where  𝒘 are the parameter estimates based on a small
training set (so themselves are random variables).



Linear regression: error decomposition

 The expected error can decompose into the sum of

structural and approximation errors

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

 Derivation

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2 = 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 + 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

+ 2𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
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Linear regression: error decomposition

 The expected error can decompose into the sum of

structural and approximation errors

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

 Derivation

𝐸𝒙,𝑦 𝑦 −  𝒘𝑇𝒙 2 = 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 + 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

= 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙
2

+ 𝐸𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
2

+ 2𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 𝒘∗𝑇𝒙 −  𝒘𝑇𝒙
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Note: Optimality condition for 𝒘∗ give us 𝐸𝒙,𝑦 𝑦 − 𝒘∗𝑇𝒙 𝒙 = 0

since 𝛻𝒘𝐸𝒙,𝑦 𝑦 − 𝒘𝑇𝒙 2  𝒘∗ = 0


