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Topics

 Discriminant functions

 Linear classifiers

 Perceptron

 Fisher

 Multi-class classification
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SVM will be covered in the later lectures



Classification problem
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 Given:Training set

 labeled set of 𝑁 input-output pairs 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁

 𝑦 ∈ {1, … , 𝐾}

 Goal: Given an input 𝒙, assign it to one of 𝐾 classes

 Examples:

 Spam filter

 Handwritten digit recognition

 …



Discriminant functions
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 Discriminant function can directly assign each vector 𝒙 to a

specific class 𝑘

 A popular way of representing a classifier

 Many classification methods are based on discriminant functions

 Assumption: the classes are taken to be disjoint

 The input space is thereby divided into decision regions

 boundaries are called decision boundaries or decision surfaces.



Discriminant Functions
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 Discriminant functions: A discriminant function 𝑓𝑖 𝒙
for each class 𝒞𝑖 (𝑖 = 1,… , 𝐾):

 𝒙 is assigned to class 𝒞𝑖 if:

𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖

 Thus, we can easily divide the feature space into 𝐾 decision

regions

∀𝒙, 𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖 ⇒ 𝒙 ∈ ℛ𝑖

 Decision surfaces (or boundaries) can also be found using

discriminant functions

 Boundary of the ℛ𝑖 and ℛ𝑗 separating samples of these two categories:

∀𝒙, 𝑓𝑖 𝒙 = 𝑓𝑗(𝒙)

ℛ𝑖: Region of the 𝑖-th class



Discriminant Functions: Two-Category
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 Decision surface: 𝑓 𝒙 = 0

 For two-category problem, we can only find a function 𝑓 ∶ ℝd

→ ℝ
 𝑓1 𝒙 = 𝑓(𝒙)

 𝑓2 𝒙 = −𝑓(𝒙)

 First, we explain two-category classification problem and then

discuss the multi-category problems.

 Binary classification: a target variable 𝑦 ∈ 0,1 or 𝑦 ∈ −1,1



Linear classifiers
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 Decision boundaries are linear in 𝒙, or linear in some

given set of functions of 𝒙

 Linearly separable data: data points that can be exactly

classified by a linear decision surface.

 Why linear classifier?

 Even when they are not optimal, we can use their simplicity

 are relatively easy to compute

 In the absence of information suggesting otherwise, linear classifiers are an

attractive candidates for initial, trial classifiers.



Two Category
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 𝑓 𝒙;𝒘 = 𝒘𝑇𝒙 + 𝑤0 = 𝑤0 +𝑤1𝑥1 + . . . 𝑤𝑑𝑥𝑑
 𝒙 = 𝑥1 𝑥2 …𝑥𝑑
 𝒘 = [𝑤1 𝑤2 …𝑤𝑑]

 𝑤0: bias

 if 𝒘𝑇𝒙 + 𝑤0 ≥ 0 then 𝒞1
 else 𝒞2

Decision surface (boundary):𝒘𝑇𝒙 + 𝑤0 = 0

𝒘 is orthogonal to every vector lying within the decision surface



Example
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𝑥1

𝑥2

1 2 3

1

2

3

4

3 −
3

4
𝑥1 − 𝑥2 = 0

if 𝒘𝑇𝒙 + 𝑤0 ≥ 0 then 𝒞1
else 𝒞2



Linear classifier: Two Category
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 Decision boundary is a (𝑑 − 1)-dimensional hyperplane 𝐻 in

the 𝑑-dimensional feature space

 The orientation of 𝐻 is determined by the normal vector 𝑤1, … , 𝑤𝑑

 𝑤0 determine the location of the surface.

 The normal distance from the origin to the decision surface is 𝑤0

𝒘

𝒙 = 𝒙⊥ + 𝑟
𝒘

𝒘

𝒘𝑇𝒙 + 𝑤0 = 𝑟 𝒘 ⇒ 𝑟 =
𝒘𝑇𝒙 + 𝑤0

𝒘

gives a signed measure of the perpendicular

distance 𝑟 of the point 𝒙 from the decision surface

𝑓 𝒙 = 0

𝒙⊥



Linear boundary: geometry
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𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 > 0

𝒘𝑇𝒙 + 𝑤0 < 0

𝒘𝑇𝒙 + 𝑤0

𝒘



Non-linear decision boundary
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 Choose non-linear features

 Classifier still linear in parameters 𝒘

𝑥1

𝑥2

1

1

−1 + 𝑥1
2 + 𝑥2

2 = 0

if 𝒘𝑇𝝓(𝒙) ≥ 0 then 𝑦 = 1
else  𝑦 = −1

𝒘 = 𝑤0, 𝑤1, … , 𝑤𝑚 = [−1, 0, 0,1,1,0]

-1
1

𝝓 𝒙 = [1, 𝒙1, 𝒙2 , 𝒙1
2, 𝒙2

2, 𝒙1𝒙2]

𝒙 = [𝒙1, 𝒙2]



Cost Function for linear classification
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 Finding linear classifiers can be formulated as an optimization

problem:

 Select how to measure the prediction loss

 Based on the training set 𝐷 = 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑛
, a cost function 𝐽 𝒘 is defined

 Solve the resulting optimization problem to find parameters:

 Find optimal  𝑓 𝒙 = 𝑓 𝒙;  𝒘 where  𝒘 = argmin
𝒘

𝐽 𝒘

 Criterion or cost functions for classification:

 We will investigate several cost functions for the classification problem



SSE cost function for classification

14

SSE cost function is not suitable for classification:

 Least square loss penalizes ‘too correct’ predictions (that they lie a long

way on the correct side of the decision)

 Least square loss also lack robustness to noise

𝐽 𝒘 =  

𝑖=1

𝑁

𝒘𝑇𝒙 𝑖 − 𝑦 𝑖 2

𝐾 = 2



SSE cost function for classification

15

𝒘𝑇𝒙

𝑦 = 1
𝒘𝑇𝒙 − 𝑦 2

1

𝒘𝑇𝒙

𝑦 = −1
𝒘𝑇𝒙 − 𝑦 2

−1

Correct predictions that 

are penalized by SSE

[Bishop]

𝐾 = 2



SSE cost function for classification
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𝐽(𝒘)

 Is it more suitable if we set 𝑓 𝒙;𝒘 = 𝑔 𝒘𝑇𝒙 ?

𝐽 𝒘 =  

𝑖=1

𝑁

sign 𝒘𝑇𝒙 𝑖 − 𝑦 𝑖 2

sign 𝑧 =  
−1, 𝑧 < 0
1, 𝑧 ≥ 0

 𝐽 𝒘 is a piecewise constant function shows the number

of misclassifications

𝐾 = 2

𝒘𝑇𝒙

𝑦 = 1

sign 𝒘𝑇𝒙 − 𝑦 2

Training error incurred in classifying

training samples



Perceptron algorithm
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 Linear classifier

 Two-class: 𝑦 ∈ {−1,1}

 𝑦 = −1 for 𝐶2, 𝑦 = 1 for 𝐶1

 Goal:∀𝑖, 𝒙(𝑖) ∈ 𝐶1 ⇒ 𝒘𝑇𝒙(𝑖) > 0

 ∀𝑖, 𝒙 𝑖 ∈ 𝐶2 ⇒ 𝒘𝑇𝒙 𝑖 < 0

 𝑓 𝒙;𝒘 = sign(𝒘𝑇𝒙)



Perceptron criterion
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𝐽𝑃 𝒘 = −  

𝑖∈ℳ

𝒘𝑇𝒙 𝑖 𝑦 𝑖

ℳ: subset of training data that are misclassified

Many solutions? Which solution among them?



Cost function

20 [Duda, Hart, and Stork, 2002]

𝐽(𝒘) 𝐽𝑃(𝒘)

𝑤0
𝑤1

𝑤0
𝑤1

# of misclassifications

as a cost function

Perceptron’s

cost function

There may be many solutions in these cost functions



Batch Perceptron
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“Gradient Descent” to solve the optimization problem:

𝒘𝑡+1 = 𝒘𝑡 − 𝜂𝛻𝒘𝐽𝑃(𝒘
𝑡)

𝛻𝒘𝐽𝑃 𝒘 = −  

𝑖∈ℳ

𝒙 𝑖 𝑦 𝑖

Batch Perceptron converges in finite number of steps for linearly

separable data:

Initialize 𝒘
Repeat

𝒘 = 𝒘+ 𝜂 𝑖∈ℳ 𝒙 𝑖 𝑦 𝑖

Until 𝜂  𝑖∈ℳ 𝒙 𝑖 𝑦 𝑖 < 𝜃



Stochastic gradient descent for Perceptron
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 Single-sample perceptron:

 If 𝒙(𝑖) is misclassified:

𝒘𝑡+1 = 𝒘𝑡 + 𝜂𝒙(𝑖)𝑦(𝑖)

 Perceptron convergence theorem: for linearly separable data

 If training data are linearly separable, the single-sample perceptron is

also guaranteed to find a solution in a finite number of steps

Initialize 𝒘, 𝑡 ← 0
repeat

𝑡 ← 𝑡 + 1
𝑖 ← 𝑡 mod 𝑁

if 𝒙(𝑖) is misclassified then

𝒘 = 𝒘+ 𝒙(𝑖)𝑦(𝑖)

Until all patterns properly classified

Fixed-Increment single sample Perceptron

𝜂 can be set to 1 and 

proof still works



Example
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Perceptron: Example
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Change 𝒘 in a direction 

that corrects the error

[Bishop]



Convergence of Perceptron
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 For data sets that are not linearly separable, the single-sample
perceptron learning algorithm will never converge

[Duda, Hart & Stork, 2002]



Pocket algorithm
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 For the data that are not linearly separable due to noise:

 Keeps in its pocket the best 𝒘 encountered up to now.

Initialize 𝒘
for 𝑡 = 1,… , 𝑇

𝑖 ← 𝑡 mod 𝑁

if 𝒙(𝑖) is misclassified then

𝒘𝑛𝑒𝑤 = 𝒘+ 𝒙(𝑖)𝑦(𝑖)

if 𝐸𝑡𝑟𝑎𝑖𝑛 𝒘𝑛𝑒𝑤 < 𝐸𝑡𝑟𝑎𝑖𝑛 𝒘 then

𝒘 = 𝒘𝑛𝑒𝑤

end

𝐸𝑡𝑟𝑎𝑖𝑛 𝒘 =
1

𝑁
 

𝑛=1

𝑁

𝑠𝑖𝑔𝑛(𝒘𝑇𝒙(𝑛)) ≠ 𝑦(𝑛)



Linear Discriminant Analysis (LDA)
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 Fisher’s Linear Discriminant Analysis :

 Dimensionality reduction

 Finds linear combinations of features with large ratios of between-

groups scatters to within-groups scatters (as discriminant new

variables)

 Classification

 Predicts the class of an observation 𝒙 by first projecting it to the

space of discriminant variables and then classifying it in this space



Good Projection for Classification

 What is a good criterion?

 Separating different classes in the projected space

28



Good Projection for Classification

 What is a good criterion?

 Separating different classes in the projected space

29



Good Projection for Classification

 What is a good criterion?

 Separating different classes in the projected space

30

𝒘



LDA Problem

 Problem definition:

 𝐶 = 2 classes

 𝒙(𝑖), 𝑦(𝑖)
𝑖=1

𝑁
training samples with 𝑁1 samples from the first class (𝒞1)

and 𝑁2 samples from the second class (𝒞2)

 Goal: finding the best direction 𝒘 that we hope to enable accurate

classification

 The projection of sample 𝒙 onto a line in direction 𝒘 is 𝒘𝑇𝒙

 What is the measure of the separation between the projected

points of different classes?

31



Measure of Separation in the Projected Direction
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[Bishop]

 Is the direction of the line jointing the class means a good

candidate for 𝒘?



Measure of Separation in the Projected 

Direction
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 The direction of the line jointing the class means is the

solution of the following problem:

 Maximizes the separation of the projected class means

max
𝒘

𝐽 𝒘 = 𝜇1
′ − 𝜇2

′ 2

s. t. 𝒘 = 1

 What is the problem with the criteria considering only

𝜇1
′ − 𝜇2

′ ?

 It does not consider the variances of the classes in the projected direction

𝜇1
′ = 𝒘𝑇 𝝁1 𝝁1 =

 
𝒙(𝑖)∈𝒞1

𝒙(𝑖)

𝑁1

𝜇2
′ = 𝒘𝑇 𝝁2 𝝁2 =

 
𝒙(𝑖)∈𝒞2

𝒙(𝑖)

𝑁2



LDA Criteria
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 Fisher idea: maximize a function that will give

 large separation between the projected class means

 while also achieving a small variance within each class, thereby

minimizing the class overlap.

𝐽 𝒘 =
𝜇1
′ − 𝜇2

′ 2

𝑠1
′2 + 𝑠2

′2



LDA Criteria

 The scatters of the original data are:

𝑠1
2 =  

𝒙(𝑖)∈𝒞1

𝒙 𝑖 − 𝝁1
2

𝑠2
2 =  

𝒙(𝑖)∈𝒞2

𝒙 𝑖 − 𝝁2
2

 The scatters of projected data are:

𝑠1
′2 =  

𝒙(𝑖)∈𝒞1

𝒘𝑇𝒙 𝑖 −𝒘𝑇𝝁1
2

𝑠2
′2 =  

𝒙(𝑖)∈𝒞2

𝒘𝑇𝒙 𝑖 −𝒘𝑇𝝁1
2

35



LDA Criteria
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𝐽 𝒘 =
𝜇1
′ − 𝜇2

′ 2

𝑠1
′2 + 𝑠2

′2

𝜇1
′ − 𝜇2

′ 2 = 𝒘𝑇𝝁1 −𝒘𝑇𝝁2
2

= 𝒘𝑇 𝝁1 − 𝝁2 𝝁1 − 𝝁2
𝑇𝒘

𝑠1
′2 =  

𝒙(𝑖)∈𝒞1

𝒘𝑇𝒙 𝑖 −𝒘𝑇𝝁1
2

= 𝒘𝑇  

𝒙(𝑖)∈𝒞1

𝒙 𝑖 − 𝝁1 𝒙 𝑖 − 𝝁1
𝑇

𝒘



LDA Criteria
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𝐽 𝒘 =
𝒘𝑇𝑺𝐵𝒘

𝒘𝑇𝑺𝑊𝒘

𝑺𝐵 = 𝝁1 − 𝝁2 𝝁1 − 𝝁2
𝑇

𝑺𝑊 = 𝑺1 + 𝑺2

𝑺1 =  

𝒙(𝑖)∈𝒞1

𝒙 𝑖 − 𝝁1 𝒙 𝑖 − 𝝁1
𝑇

𝑺2 =  

𝒙(𝑖)∈𝒞2

𝒙 𝑖 − 𝝁2 𝒙 𝑖 − 𝝁2
𝑇

scatter matrix=N×covariance matrix

Between-class 

scatter matrix

Within-class 

scatter matrix



LDA Derivation
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LDA Derivation

 𝑺𝐵𝒘 (for any vector 𝒘) points in the same direction as

𝝁1 − 𝝁2:

 Thus, we can solve the eigenvalue problem immediately

If 𝑺𝑊 is full-rank

39

𝑺𝐵𝒘 = 𝜆𝑺𝑊𝒘 𝑺𝑊
−1𝑺𝐵𝒘 = 𝜆𝒘

𝑺𝐵𝒘 = 𝝁1 − 𝝁2 𝝁1 − 𝝁2
𝑇𝒘 ∝ 𝝁1 − 𝝁2

𝒘 ∝ 𝑺𝑊
−1 𝝁1 − 𝝁2



LDA Algorithm
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 Find 𝝁1 and 𝝁2 as the mean of class 1 and 2 respectively

 Find 𝑺1 and 𝑺2 as scatter matrix of class 1 and 2 respectively

 𝑺𝑊 = 𝑺1 + 𝑺2
 𝑺𝐵 = 𝝁1 − 𝝁2 𝝁1 − 𝝁2

𝑇

 Feature Extraction

 𝒘 = 𝑺𝑤
−1 𝝁1 − 𝝁2 as the eigenvector corresponding to the largest

eigenvalue of 𝑺𝑤
−1𝑺𝑏

 Classification

 𝒘 = 𝑺𝑤
−1 𝝁1 − 𝝁2

 Using a threshold on 𝒘𝑇𝒙, we can classify 𝒙

𝝁2

𝝁1



Multi-class classification
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 Solutions to multi-category problems:

 Extend the learning algorithm to support multi-class:

 A function 𝑓𝑖(𝒙) for each class 𝑖 is found

  𝑦 = argmax
𝑖=1,…,𝑐

𝑓𝑖(𝒙)

 Converting the problem to a set of two-class problems:

𝑥1

𝑥2

𝒙 is assigned to class 𝐶𝑖 if 𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖



Converting multi-class problem to a set of 

two-class problems
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 “one versus rest” or “one against all”

 For each class 𝐶𝑖, a linear discriminant function that separates

samples of 𝐶𝑖 from all the other samples is found.

 Totally linearly separable

 “one versus one”

 𝑐(𝑐 − 1)/2 linear discriminant functions are used, one to

separate samples of a pair of classes.

 Pairwise linearly separable



Multi-class classification
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 One-vs-all (one-vs-rest)

Class 1:

Class 2:

Class 3:

𝑥2

𝑥2

𝑥1

𝑥2

𝑥1

𝑥1 𝑥2

𝑥1



Multi-class classification
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 One-vs-one

Class 1:

Class 2:

Class 3:

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1



Multi-class classification: ambiguity
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one versus rest one versus one

[Duda, Hart & Stork, 2002]

 Converting the multi-class problem to a set of two-class

problems can lead to regions in which the classification is

undefined



Multi-class classification: linear machine
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 A discriminant function 𝑓𝑖 𝒙 = 𝒘𝑖
𝑇𝒙 + 𝑤𝑖0 for each class

𝒞𝑖 (𝑖 = 1,… , 𝐾):

 𝒙 is assigned to class 𝒞𝑖 if:

𝑓𝑖(𝒙) > 𝑓𝑗(𝒙) 𝑗  𝑖

 Decision surfaces (boundaries) can also be found using

discriminant functions

 Boundary of the contiguous ℛ𝑖 and ℛ𝑗:∀𝒙, 𝑓𝑖 𝒙 = 𝑓𝑗(𝒙)

 𝒘𝑖 −𝒘𝑗

𝑇
𝒙 + 𝑤𝑖0 −𝑤𝑗0 = 0



Multi-class classification: linear machine
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[Duda, Hart & Stork, 2002]



Perceptron: multi-class

48

 𝑦 = argmax
𝑖=1,…,𝑐

𝒘𝑖
𝑇𝒙

𝐽𝑃 𝑾 = −  

𝑖∈ℳ

𝒘𝑦 𝑖 −𝒘  𝑦 𝑖

𝑇
𝒙 𝑖

ℳ: subset of training data that are misclassified

ℳ = 𝑖| 𝑦 𝑖 ≠ 𝑦(𝑖)

Initialize 𝑾 = 𝒘1, … ,𝒘𝑐 , 𝑘 ← 0
repeat

𝑘 ← 𝑘 + 1 mod 𝑁

if 𝒙(𝑖) is misclassified then

𝒘  𝑦 𝑖 = 𝒘  𝑦 𝑖 − 𝒙(𝑖)

𝒘𝑦 𝑖 = 𝒘𝑦 𝑖 + 𝒙(𝑖)

Until all patterns properly classified



Resources
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 C. Bishop, “Pattern Recognition and Machine Learning”,

Chapter 4.1.


