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Dimensionality Reduction:

Feature Selection vs. Feature Extraction

 Feature selection

 Select a subset of a given feature set

 Feature extraction

 A linear or non-linear transform on the original feature space
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Feature Extraction
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 Mapping of the original data to another space

 Criterion for feature extraction can be different based on problem

settings

 Unsupervised task: minimize the information loss (reconstruction error)

 Supervised task: maximize the class discrimination on the projected space

 Feature extraction algorithms

 Linear Methods

 Unsupervised: e.g., Principal Component Analysis (PCA)

 Supervised: e.g., Linear Discriminant Analysis (LDA)

 Also known as Fisher’s Discriminant Analysis (FDA)



Feature Extraction
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 Unsupervised feature extraction:

 Supervised feature extraction:

Feature Extraction𝑿 =
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⋮ ⋱ ⋮
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Unsupervised Feature Reduction
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 Visualization: projection of high-dimensional data onto 2D

or 3D.

 Data compression: efficient storage, communication, or

and retrieval.

 Pre-process: to improve accuracy by reducing features

 As a preprocessing step to reduce dimensions for supervised

learning tasks

 Helps avoiding overfitting

 Noise removal

 E.g, “noise” in the images introduced by minor lighting

variations, slightly different imaging conditions, etc.



Linear Transformation
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 For linear transformation, we find an explicit mapping

𝑓 𝒙 = 𝑨𝑇𝒙 that can transform also new data vectors.

Original data

reduced data

=

Type equation here.

𝑨𝑇 ∈ ℝ𝑑′×𝑑

𝒙 ∈ ℝ

𝒙′ ∈ ℝ𝑑′

𝒙′ = 𝑨𝑇𝒙
𝑑′ < 𝑑



Linear Transformation

7

 Linear transformation are simple mappings

1a
d a

𝑗 = 1,… , 𝑑′

𝑨 =

𝑎11 ⋯ 𝑎1𝑑′
⋮ ⋱ ⋮

𝑎𝑑1 ⋯ 𝑎𝑑𝑑′
𝒙′ = 𝑨𝑇𝒙

𝑥𝑗
′ = 𝒂𝑗

𝑇𝒙

𝑥1
′

⋮
𝑥𝑑′
′

=

𝑎11 ⋯ 𝑎𝑑1
⋮ ⋱ ⋮

𝑎1𝑑′ ⋯ 𝑎𝑑′𝑑

𝑥1
⋮
𝑥𝑑
𝒂𝑑′
𝑇

𝒂1
𝑇



Linear Dimensionality Reduction
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 Unsupervised

 Principal Component Analysis (PCA) [we will discuss]

 Independent Component Analysis (ICA) [we will discuss]

 SingularValue Decomposition (SVD)

 Multi Dimensional Scaling (MDS)

 Canonical Correlation Analysis (CCA)



Principal Component Analysis (PCA)
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 Also known as Karhonen-Loeve (KL) transform

 Principal Components (PCs): orthogonal vectors that are

ordered by the fraction of the total information (variation) in

the corresponding directions

 Find the directions at which data approximately lie

 When the data is projected onto first PC, the variance of the projected data

is maximized

 PCA is an orthogonal projection of the data into a subspace

so that the variance of the projected data is maximized.



Principal Component Analysis (PCA)

10

 The “best” linear subspace (i.e. providing least reconstruction
error of data):
 Find mean reduced data

 The axes have been rotated to new (principal) axes such that:

 Principal axis 1 has the highest variance

....

 Principal axis i has the i-th highest variance.

 The principal axes are uncorrelated

 Covariance among each pair of the principal axes is zero.

 Goal: reducing the dimensionality of the data while preserving
the variation present in the dataset as much as possible.

 PCs can be found as the “best” eigenvectors of the covariance
matrix of the data points.



Principal components
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 If data has a Gaussian distribution 𝑁(𝝁, 𝚺), the direction of the

largest variance can be found by the eigenvector of 𝚺 that

corresponds to the largest eigenvalue of 𝚺

4.0 4.5 5.0 5.5 6.0
2
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PCA: Steps
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 Input: 𝑁 × 𝑑 data matrix 𝑿 (each row contain a 𝑑
dimensional data point)

 𝝁 =
1

𝑁
 𝑖=1
𝑁 𝒙(𝑖)

  𝑿 ← Mean value of data points is subtracted from rows of 𝑿

 𝑪 =
1

𝑁
 𝑿𝑇 𝑿 (Covariance matrix)

 Calculate eigenvalue and eigenvectors of 𝑪

 Pick 𝑑′ eigenvectors corresponding to the largest eigenvalues

and put them in the columns of 𝑨 = [𝒗1, … , 𝒗𝑑′]

 𝑿′ =  𝑿𝑨
First PC d’-th PC



Covariance Matrix
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𝝁𝒙 =

𝜇1
⋮
𝜇𝑑

=
𝐸(𝑥1)
⋮

𝐸(𝑥𝑑)

𝜮 = 𝐸 𝒙 − 𝝁𝒙 𝒙 − 𝝁𝒙
𝑇

 ML estimate of covariance matrix from data points 𝒙(𝑖)
𝑖=1

𝑁
:

 𝜮 =
1

𝑁
 

𝑖=1

𝑁

𝒙(𝑖) −  𝝁 𝒙(𝑖) −  𝝁
𝑇
=
1

𝑁
 𝑿𝑇 𝑿

 𝑿 =
 𝒙(1)

⋮
 𝒙(𝑁)

=
𝒙(1) −  𝝁

⋮
𝒙(𝑁) −  𝝁

 𝝁 =
1

𝑁
 

𝑖=1

𝑁

𝒙(𝑖)

Mean-centered data
We now assume that data are mean removed

and 𝒙 in the later slides is indeed  𝒙



Correlation matrix
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1

𝑁
𝑿𝑇𝑿 =

1

𝑁

𝑥1
(1)

… 𝑥1
(𝑁)

⋮ ⋱ ⋮

𝑥𝑑
(1)

… 𝑥𝑑
(𝑁)

𝑥1
(1)

… 𝑥𝑑
(1)

⋮ ⋱ ⋮

𝑥1
(𝑁)

… 𝑥𝑑
(𝑁)

=
1

𝑁

 

𝑛=1

𝑁

𝑥1
(𝑛)

𝑥1
(𝑛)

…  

𝑛=1

𝑁

𝑥1
(𝑛)

𝑥𝑑
(𝑛)

⋮ ⋱ ⋮

 

𝑛=1

𝑁

𝑥𝑑
(𝑛)

𝑥1
(𝑛)

…  

𝑛=1

𝑁

𝑥𝑑
(𝑛)

𝑥𝑑
(𝑛)

𝑿 =
𝑥1
(1)

… 𝑥𝑑
(1)

⋮ ⋱ ⋮

𝑥1
(𝑁)

… 𝑥𝑑
(𝑁)



Two Interpretations
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 MaximumVariance Subspace

 PCA finds vectors v such that projections on to the

vectors capture maximum variance in the data



1

𝑁
 𝑛=1
𝑁 𝒂𝑇𝒙 𝑛 2

=
1

𝑁
𝒂𝑇𝑿𝑇𝑿𝒂

 Minimum Reconstruction Error

 PCA finds vectors v such that projection on to the

vectors yields minimum MSE reconstruction



1

𝑁
 𝑛=1
𝑁 𝒙 𝑛 − 𝒂𝑇𝒙 𝑛 𝒂

2



Least Squares Error Interpretation
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 PCs are linear least squares fits to samples, each orthogonal to

the previous PCs:

 First PC is a minimum distance fit to a vector in the original feature

space

 Second PC is a minimum distance fit to a vector in the plane

perpendicular to the first PC

 And so on



Example
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Example
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Least Squares Error and Maximum Variance 

Views Are Equivalent (1-dim Interpretation)

 Minimizing sum of square distances to the line is equivalent to

maximizing the sum of squares of the projections on that line

(Pythagoras).
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origin

red2+blue2=green2

green2 is fixed (shows the data vector after mean removing) 

⇒ maximizing blue2 is equivalent to minimizing red2



First PC
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 The first PC is direction of greatest variability in data

 We will show that the first PC is the eigenvector of the

covariance matrix corresponding the maximum eigen value of

this matrix.

 If ||𝒂|| = 1, the projection of a d-dimensional 𝒙 on 𝒂 is 𝒂𝑇𝒙

origin

𝒙

𝒂

𝒙 cos 𝜃 = 𝒙
𝒂𝑇𝒙

𝒙 𝒂
= 𝒂𝑇𝒙

𝜃



First PC 
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argmax
𝒂

1

𝑁
 

𝑛=1

𝑁

𝒂𝑇𝒙 𝑛 2
=
1

𝑁
𝒂𝑇𝑿𝑇𝑿𝒂

s.t. 𝒂𝑇𝒂 = 1

𝜕

𝜕𝒂

1

𝑁
𝒂𝑇𝑿𝑇𝑿𝒂 + 𝜆 1 − 𝒂𝑇𝒂 = 0 ⇒

1

𝑁
𝑿𝑇𝑿𝒂 = 𝜆𝒂

 𝒂 is the eigenvector of sample covariance matrix
1

𝑁
𝑿𝑇𝑿

 The eigenvalue 𝜆 denotes the amount of variance along that dimension.

 Variance=
1

𝑁
𝒂𝑇𝑿𝑇𝑿𝒂 = 𝒂𝑇

1

𝑁
𝑿𝑇𝑿𝒂 = 𝒂𝑇𝜆𝒂 = 𝜆

 So, if we seek the dimension with the largest variance, it will be the
eigenvector corresponding to the largest eigenvalue of the sample
covariance matrix



PCA: Uncorrelated Features 
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𝒙′ = 𝑨𝑇𝒙

𝑹𝒙′ = 𝐸 𝒙′𝒙′
𝑇

= 𝐸 𝑨𝑇𝒙𝒙𝑇𝑨 = 𝑨𝑇𝐸 𝒙𝒙𝑇 𝑨 = 𝑨𝑇𝑹𝒙𝑨

 If 𝑨 = [𝒂1, … , 𝒂𝑑] where 𝒂1, … , 𝒂𝑑 are orthonormal
eighenvectors of 𝑹𝒙:

𝑹𝒙′ = 𝑨𝑇𝑹𝒙𝑨 = 𝑨𝑇 𝑨𝚲𝑨𝑇 𝑨 = 𝚲

⇒ ∀𝑖 ≠ 𝑗 𝑖, 𝑗 = 1,… , 𝑑 𝐸 𝒙𝑖
′𝒙𝑗

′ = 0

 then mutually uncorrelated features are obtained

 Completely uncorrelated features avoid information
redundancies



PCA Derivation: 

Mean Square Error Approximation
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 Incorporating all eigenvectors in 𝑨 = [𝒂1, … , 𝒂𝑑]:

𝒙′ = 𝑨𝑇𝒙 ⇒ 𝑨𝒙′ = 𝑨𝑨𝑇𝒙 = 𝒙
⇒ 𝒙 = 𝑨𝒙′

 ⟹ If 𝑑′ = 𝑑 then 𝒙 can be reconstructed exactly from 𝒙′



PCA Derivation:

Relation between Eigenvalues and Variances
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 The 𝑗-th largest eigenvalue of 𝑹𝒙 is the variance on the 𝑗-th
PC:

𝑣𝑎𝑟 𝑥𝑗
′ = 𝜆𝑗

𝑣𝑎𝑟 𝑥𝑗
′ = 𝐸 𝑥𝑗

′𝑥𝑗
′

= 𝐸 𝒂𝑗
𝑇𝒙𝒙𝑇𝒂𝑗 = 𝒂𝑗

𝑇𝐸 𝒙𝒙𝑇 𝒂𝑗

= 𝒂𝑗
𝑇𝑹𝒙𝒂𝑗 = 𝒂𝑗

𝑇𝜆𝑗𝒂𝑗 = 𝜆𝑗

Eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯
•The 1st PC is the the eigenvector of the sample covariance matrix  

associated with the largest eigenvalue

•The 2nd PC 𝑣2 is the the eigenvector of the sample covariance matrix 

associated with the second largest eigenvalue

•And so on …



PCA Derivation: 

Mean Square Error Approximation
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 Incorporating only 𝑑′ eigenvectors corresponding to the

largest eigenvalues 𝑨 = [𝒂1, … , 𝒂𝑑′] (𝑑′ < 𝑑)

 It minimizes MSE between 𝒙 and  𝒙 = 𝑨𝒙′:

𝐽 𝑨 = 𝐸 𝒙 −  𝒙 2 = 𝐸 𝒙 − 𝑨𝒙′ 2

= 𝐸  

𝑗=𝑑′+1

𝑑

𝑥𝑗
′𝒂𝑗

2

= 𝐸  

𝑗=𝑑′+1

𝑑

 

𝑘=𝑑′+1

𝑑

𝑥𝑗
′𝒂𝑗

𝑇𝒂𝑘 𝑥𝑘
′ = 𝐸  

𝑗=𝑑′+1

𝑑

𝑥𝑗
′2

=  

𝑗=𝑑′+1

𝑑

𝐸 𝑥𝑗
′2 =  

𝑗=𝑑′+1

𝑑

𝜆𝑗 Sum of the 𝑑 − 𝑑′ smallest 

eigenvalues



PCA Derivation: 

Mean Square Error Approximation
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 In general, it can also be shown MSE is minimized compared to

any other approximation of 𝒙 by any 𝑑′ -dimensional

orthonormal basis

 without first assuming that the axes are eigenvectors of the correlation

matrix, this result can also be obtained.

 If the data is mean-centered in advance,𝑹𝒙 and 𝑪𝒙 (covariance

matrix) will be the same.

 However, in the correlation version when 𝑪𝒙 ≠ 𝑹𝒙 the approximation is

not, in general, a good one (although it is a minimum MSE solution)



PCA on Faces: “Eigenfaces”
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 ORL Database

Some Images



PCA on Faces: “Eigenfaces”
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For eigen faces

“gray” = 0,

“white” > 0,

“black” < 0

Average

face

1st 

to 10th

PCs



PCA on Faces:

Feature vector=[𝑥1
′ ,𝑥2

′ , … ,𝑥𝑑′
′ ]

+𝑥1
′ × +𝑥2

′ × +𝑥256
′ ×+⋯

29

=

Average 

Face

𝑥𝑖
′ = 𝑃𝐶𝑖

𝑇𝒙 The projection of 𝒙 on the i-th PC 

𝒙 is a 112 × 92 = 10304 dimensional vector

containing intensity of the pixels of this image



PCA on Faces: Reconstructed Face

d'=1 d'=2 d'=4 d'=8 d'=16

d'=32 d'=64 d'=128
Original 

Imaged'=256
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Dimensionality Reduction by PCA
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 In high-dimensional problems, data sometimes lies near a

linear subspace (small variability around this subspace can

be considered as noise)

 Only keep data projections onto principal components

with large eigenvalue

 Might lose some info, but if eigenvalues are small, do not

lose much



Kernel PCA

32

 Kernel extension of PCA

data (approximately) lies on 

a lower dimensional non-linear space



PCA and LDA: Drawbacks
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 PCA drawback: An excellent information packing transform
does not necessarily lead to a good class separability.
 The directions of the maximum variance may be useless for classification

purpose

 LDA drawback
 Singularity or under-sampled problem (when 𝑁 < 𝑑)

 Example: gene expression data, images, text documents

 Can reduces dimension only to 𝑑′ ≤ 𝐶 − 1 (unlike PCA)

PCA
LDA



PCA vs. LDA

 Although LDA often provide more suitable features for

classification tasks, PCA might outperform LDA in some

situations:

 when the number of samples per class is small (overfitting problem

of LDA)

 when the number of the desired features is more than 𝐶 − 1

 Advances in the last decade:

 Semi-supervised feature extraction

 E.g., PCA+LDA, Regularized LDA, Locally FDA (LFDA)

34



Singular Value Decomposition (SVD)
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 Given a matrix 𝑿 ∈ ℝ𝑁×𝑑, the SVD is a decomposition:

𝑿 = 𝑼𝑺𝑽𝑇

 𝑺 is a diagonal matrix with the singular values 𝜎1, … , 𝜎𝑑 of 𝑋.

 Columns of 𝑼,𝑽 are orthonormal matrices

𝑿
(𝑁 × 𝑑)

𝑼
(𝑁 × 𝑑)

𝑽𝑇

(𝑑 × 𝑑)

𝑺
(𝑑 × 𝑑)



Singular Value Decomposition (SVD)
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 Given a matrix 𝑿 ∈ ℝ𝑁×𝑑, the SVD is a decomposition:

𝑿 = 𝑼𝑺𝑽𝑇

 SVD of 𝑋 is related to eigen-decomposition of 𝑿𝑇𝑿 and 𝑿𝑿𝑇 .

 𝑿𝑇𝑿 = 𝑽𝑺𝑼𝑇𝑼𝑺𝑽𝑇 = 𝑽𝑺2𝑽𝑇

 so 𝑽 contains eigenvectors of 𝑿𝑇𝑿 and 𝑺2 includes its eigenvalues (𝜆𝑖
= 𝜎𝑖

2)

 𝑿𝑿𝑇 = 𝑼𝑺𝑽𝑇𝑽𝑺𝑼𝑇 = 𝑼𝑺2𝑼𝑇

 so 𝑼 contains eigenvectors of 𝑿𝑿𝑇and 𝑺2 includes its eigenvalues (𝜆𝑖
= 𝜎𝑖

2)

 In fact, we can view each row of 𝑈𝑆 as the coordinates of an

example along the axes given by the eigenvectors.



Independent Component Analysis (ICA)
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 PCA:

 The transformed dimensions will be uncorrelated from each

other

 Orthogonal linear transform

 Only uses second order statistics (i.e., covariance matrix)

 ICA:

 The transformed dimensions will be as independent as

possible.

 Non-orthogonal linear transform

 High-order statistics can also used



Uncorrelated and Independent 
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 Gaussian

 Independent ⟺ Uncorrelated

 Non-Gaussian

 Independent ⇒ Uncorrelated

 Uncorrelated ⇏ Independent

Uncorrelated:  𝑐𝑜𝑣 𝑋1,𝑋2 = 0
Independent:   𝑃 𝑋1,𝑋2 = 𝑃(𝑋1)𝑃(𝑋2)



ICA: Cocktail party problem
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 Cocktail party problem

 𝑑 speakers are speaking simultaneously and any microphone

records only an overlapping combination of these voices.

 Each microphone records a different combination of the speakers’ voices.

 Using these 𝑑 microphone recordings, can we separate out the

original 𝑑 speakers’ speech signals?

 Mixing matrix 𝑨:

𝒙 = 𝑨𝒔

 Unmixing matrix 𝑨−1:

𝒔 = 𝑨−1𝒙

𝑠𝑗
(𝑖)

: sound that speaker 𝑗 was uttering at time 𝑖. 

𝑥𝑗
(𝑖)

: acoustic reading recorded by microphone 𝑗 at time 𝑖.



ICA
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 Find a linear transformation 𝒙 = 𝑨𝒔

 for which dimensions of 𝒔 = 𝑠1, 𝑠2, … , 𝑠𝑑
𝑇 are

statistically independent

𝑝(𝑠1, … , 𝑠𝑑) = 𝑝1(𝑠1)𝑝2(𝑠2)…𝑝𝑑(𝑠𝑑)

 Algorithmically, we need to identify matrix 𝑨 and sources

𝒔 where 𝒙 = 𝑨𝒔 such that the mutual information

between 𝑠1, 𝑠2, … , 𝑠𝑑 is minimized:

𝐼 𝑠1, 𝑠2, … , 𝑠𝑑 =  

𝑖=1

𝑑

𝐻 𝑠𝑖 −𝐻 𝑠1, 𝑠2, … , 𝑠𝑑


