Principal Component Analysis (PCA)

CE-717: Machine Learning
Sharif University of Technology
Spring 2016

Soleymani

Dimensionality Reduction:
 Feature Selection vs. Feature Extraction

- Feature selection
- Select a subset of a given feature set
- Feature extraction
- A linear or non-linear transform on the original feature space

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right] \rightarrow\left[\begin{array}{c}
x_{i_{1}} \\
\vdots \\
x_{i_{d \prime}}
\end{array}\right]
$$

Feature
Selection

$$
\left(d^{\prime}<d\right)
$$

$$
\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right] \rightarrow\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{d^{\prime}}
\end{array}\right]=f\left(\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]\right)
$$

Feature
Extraction

Feature Extraction

- Mapping of the original data to another space
- Criterion for feature extraction can be different based on problem settings
- Unsupervised task: minimize the information loss (reconstruction error)
- Supervised task: maximize the class discrimination on the projected space
- Feature extraction algorithms
- Linear Methods
, Unsupervised: e.g., Principal Component Analysis (PCA)
- Supervised: e.g., Linear Discriminant Analysis (LDA)
\square Also known as Fisher's Discriminant Analysis (FDA)

Feature Extraction

- Unsupervised feature extraction:

$$
\boldsymbol{X}=\left[\begin{array}{ccc}
x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\
\vdots & \ddots & \vdots \\
x_{1}^{(N)} & \cdots & x_{d}^{(N)}
\end{array}\right] \square \text { Feature Extraction }
$$

A mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ Or only the transformed data

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{ccc}
x_{1}^{\prime(1)} & \cdots & x^{\prime(1)} \\
\vdots & \ddots & \vdots \\
x_{1}^{\prime(N)} & \cdots & x_{d^{\prime}}^{\prime(N)}
\end{array}\right]
$$

- Supervised feature extraction:

$$
\begin{gathered}
\boldsymbol{X}=\left[\begin{array}{ccc}
x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\
\vdots & \ddots & \vdots \\
x_{1}^{(N)} & \cdots & x_{d}^{(N)}
\end{array}\right] \\
Y=\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right]
\end{gathered}
$$

A mapping $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}$ Or
only the transformed data

$$
\boldsymbol{X}^{\prime}=\left[\begin{array}{ccc}
x^{\prime(1)} & \cdots & x^{\prime(1)} \\
\vdots & \ddots & \vdots \\
x_{1}^{\prime(N)} & \cdots & x_{d^{\prime}}^{\prime(N)}
\end{array}\right]
$$

Unsupervised Feature Reduction

- Visualization: projection of high-dimensional data onto 2D or 3D.
- Data compression: efficient storage, communication, or and retrieval.
- Pre-process: to improve accuracy by reducing features
- As a preprocessing step to reduce dimensions for supervised learning tasks
- Helps avoiding overfitting
- Noise removal
- E.g, "noise" in the images introduced by minor lighting variations, slightly different imaging conditions, etc.

Linear Transformation

- For linear transformation, we find an explicit mapping $f(\boldsymbol{x})=\boldsymbol{A}^{T} \boldsymbol{x}$ that can transform also new data vectors.

Linear Transformation

- Linear transformation are simple mappings

$$
\begin{aligned}
& \boldsymbol{x}^{\boldsymbol{\prime}}=\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{x} \quad \boldsymbol{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 d^{\prime}} \\
\vdots & \ddots & \vdots \\
a_{d 1} & \cdots & a_{d d^{\prime}}
\end{array}\right] \\
& \left.\left[\begin{array}{c}
x_{1}^{\prime} \\
\vdots \\
x_{d^{\prime}}^{\prime}
\end{array}\right]=\begin{array}{cc}
{\left[\begin{array}{ccc}
a_{11} & \cdots & a_{d 1} \\
\vdots & \ddots & \vdots \\
a_{1 d^{\prime}} & \cdots & a_{d^{\prime}}
\end{array}\right]}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{a}_{1}^{T} \\
{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]} \\
\boldsymbol{a}_{d^{\prime}}^{T}
\end{array}\right. \\
& x_{j}^{\prime}=\boldsymbol{a}_{j}^{T} \boldsymbol{x} \quad j=1, \ldots, d^{\prime}
\end{aligned}
$$

Linear Dimensionality Reduction

- Unsupervised
- Principal Component Analysis (PCA) [we will discuss]
- Independent Component Analysis (ICA) [we will discuss]
- Singular Value Decomposition (SVD)
- Multi Dimensional Scaling (MDS)
- Canonical Correlation Analysis (CCA)

Principal Component Analysis (PCA)

- Also known as Karhonen-Loeve (KL) transform
- Principal Components (PCs): orthogonal vectors that are ordered by the fraction of the total information (variation) in the corresponding directions
b Find the directions at which data approximately lie
- When the data is projected onto first PC, the variance of the projected data is maximized
- PCA is an orthogonal projection of the data into a subspace so that the variance of the projected data is maximized.

Principal Component Analysis (PCA)

- The "best" linear subspace (i.e. providing least reconstruction error of data):
- Find mean reduced data
> The axes have been rotated to new (principal) axes such that:
- Principal axis I has the highest variance
- Principal axis i has the i-th highest variance.
- The principal axes are uncorrelated
- Covariance among each pair of the principal axes is zero.
- Goal: reducing the dimensionality of the data while preserving the variation present in the dataset as much as possible.
- PCs can be found as the "best" eigenvectors of the covariance matrix of the data points.

Principal components

- If data has a Gaussian distribution $N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, the direction of the largest variance can be found by the eigenvector of $\boldsymbol{\Sigma}$ that corresponds to the largest eigenvalue of $\boldsymbol{\Sigma}$

PCA: Steps

- Input: $N \times d$ data matrix \boldsymbol{X} (each row contain a d dimensional data point)
- $\boldsymbol{\mu}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}$
- $\widetilde{\boldsymbol{X}} \leftarrow$ Mean value of data points is subtracted from rows of \boldsymbol{X}
- $C=\frac{1}{N} \widetilde{X}^{T} \widetilde{\boldsymbol{X}}$ (Covariance matrix)
- Calculate eigenvalue and eigenvectors of \boldsymbol{C}
- Pick d^{\prime} eigenvectors corresponding to the largest eigenvalues and put them in the columns of $\boldsymbol{A}=\left[\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{d^{\prime}}\right]$
$\boldsymbol{X}^{\prime}=\widetilde{\boldsymbol{X}} \boldsymbol{A}$

First PC d'-th PC

Covariance Matrix

$$
\begin{gathered}
\boldsymbol{\mu}_{\boldsymbol{x}}=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{d}
\end{array}\right]=\left[\begin{array}{c}
E\left(x_{1}\right) \\
\vdots \\
E\left(x_{d}\right)
\end{array}\right] \\
\boldsymbol{\Sigma}=E\left[\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)\left(\boldsymbol{x}-\boldsymbol{\mu}_{\boldsymbol{x}}\right)^{T}\right]
\end{gathered}
$$

- ML estimate of covariance matrix from data points $\left\{\boldsymbol{x}^{(i)}\right\}_{i=1}^{N}$:

$$
\begin{gathered}
\widehat{\boldsymbol{\Sigma}}=\frac{1}{N} \sum_{i=1}^{N}\left(\boldsymbol{x}^{(i)}-\widehat{\boldsymbol{\mu}}\right)\left(\boldsymbol{x}^{(i)}-\widehat{\boldsymbol{\mu}}\right)^{T}=\frac{1}{N}\left(\widetilde{\boldsymbol{X}}^{T} \widetilde{\boldsymbol{X}}\right) \\
\widetilde{\boldsymbol{X}}=\left[\begin{array}{c}
\widetilde{\boldsymbol{x}}^{(1)} \\
\vdots \\
\widetilde{\boldsymbol{x}}^{(N)}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{x}^{(1)}-\widehat{\boldsymbol{\mu}} \\
\vdots \\
\boldsymbol{x}^{(N)}-\widehat{\boldsymbol{\mu}}
\end{array}\right] \quad \widehat{\boldsymbol{\mu}}=\frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)}
\end{gathered}
$$ and \boldsymbol{x} in the later slides is indeed $\tilde{\boldsymbol{x}}$

Correlation matrix

$$
\begin{aligned}
& \boldsymbol{X}=\left[\begin{array}{ccc}
x_{1}^{(1)} & \ldots & x_{d}^{(1)} \\
\vdots & \ddots & \vdots \\
x_{1}^{(N)} & \ldots & x_{d}^{(N)}
\end{array}\right] \\
& \frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X}=\frac{1}{N}\left[\begin{array}{ccc}
x_{1}^{(1)} & \ldots & x_{1}^{(N)} \\
\vdots & \ddots & \vdots \\
x_{d}^{(1)} & \ldots & x_{d}^{(N)}
\end{array}\right]\left[\begin{array}{ccc}
x_{1}^{(1)} & \ldots & x_{d}^{(1)} \\
\vdots & \ddots & \vdots \\
x_{1}^{(N)} & \ldots & x_{d}^{(N)}
\end{array}\right]
\end{aligned}
$$

Two Interpretations

- Maximum Variance Subspace
- PCA finds vectors v such that projections on to the vectors capture maximum variance in the data
$\stackrel{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{a}^{T} \boldsymbol{x}^{(n)}\right)^{2}=\frac{1}{N} \boldsymbol{a}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{a}$
- Minimum Reconstruction Error
- PCA finds vectors v such that projection on to the vectors yields minimum MSE reconstruction
, $\frac{1}{N} \sum_{n=1}^{N}\left\|\boldsymbol{x}^{(n)}-\left(\boldsymbol{a}^{T} \boldsymbol{x}^{(n)}\right) \boldsymbol{a}\right\|^{2}$

Least Squares Error Interpretation

- PCs are linear least squares fits to samples, each orthogonal to the previous PCs:
- First PC is a minimum distance fit to a vector in the original feature space
- Second PC is a minimum distance fit to a vector in the plane perpendicular to the first PC
- And so on

Example

Example

Least Squares Error and Maximum Variance Views Are Equivalent (1-dim Interpretation)

- Minimizing sum of square distances to the line is equivalent to maximizing the sum of squares of the projections on that line (Pythagoras).

First PC

- The first PC is direction of greatest variability in data
- We will show that the first PC is the eigenvector of the covariance matrix corresponding the maximum eigen value of this matrix.
- If $\|\boldsymbol{a}\|=1$, the projection of a d-dimensional \boldsymbol{x} on \boldsymbol{a} is $\boldsymbol{a}^{T} \boldsymbol{x}$

First PC

$$
\begin{aligned}
& \underset{\boldsymbol{a}}{\operatorname{argmax}} \frac{1}{N} \sum_{n=1}^{N}\left(\boldsymbol{a}^{T} \boldsymbol{x}^{(n)}\right)^{2}=\frac{1}{N} \boldsymbol{a}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{a} \\
& \text { s.t. } \boldsymbol{a}^{T} \boldsymbol{a}=1
\end{aligned}
$$

$$
\frac{\partial}{\partial \boldsymbol{a}}\left(\frac{1}{N} \boldsymbol{a}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{a}+\lambda\left(1-\boldsymbol{a}^{T} \boldsymbol{a}\right)\right)=0 \Rightarrow \frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{a}=\lambda \boldsymbol{a}
$$

- \boldsymbol{a} is the eigenvector of sample covariance matrix $\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X}$
- The eigenvalue λ denotes the amount of variance along that dimension.
, Variance $=\frac{1}{N} \boldsymbol{a}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{a}=\boldsymbol{a}^{T}\left(\frac{1}{N} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{a}\right)=\boldsymbol{a}^{T} \lambda \boldsymbol{a}=\lambda$
- So, if we seek the dimension with the largest variance, it will be the eigenvector corresponding to the largest eigenvalue of the sample covariance matrix

PCA: Uncorrelated Features

$$
\begin{gathered}
\boldsymbol{x}^{\prime}=\boldsymbol{A}^{T} \boldsymbol{x} \\
\boldsymbol{R}_{\boldsymbol{x}^{\prime}}=E\left[\boldsymbol{x}^{\prime} \boldsymbol{x}^{\prime T}\right]=E\left[\boldsymbol{A}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{A}\right]=\boldsymbol{A}^{T} E\left[\boldsymbol{x} \boldsymbol{x}^{T}\right] \boldsymbol{A}=\boldsymbol{A}^{T} \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{A}
\end{gathered}
$$

- If $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}\right]$ where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d}$ are orthonormal eighenvectors of $\boldsymbol{R}_{\boldsymbol{x}}$:

$$
\begin{gathered}
\boldsymbol{R}_{\boldsymbol{x}^{\prime}}=\boldsymbol{A}^{T} \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{A}=\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{\Lambda} \boldsymbol{A}^{T}\right) \boldsymbol{A}=\boldsymbol{\Lambda} \\
\Rightarrow \forall i \neq j(i, j=1, \ldots, d) E\left[\boldsymbol{x}_{i}^{\prime} \boldsymbol{x}_{j}^{\prime}\right]=0
\end{gathered}
$$

then mutually uncorrelated features are obtained

- Completely uncorrelated features avoid information redundancies

PCA Derivation:

Mean Square Error Approximation

- Incorporating all eigenvectors in $A=\left[a_{1}, \ldots, a_{d}\right]$:

$$
\begin{aligned}
x^{\prime}=A^{T} x & \Rightarrow A x^{\prime}=A A^{T} x=x \\
& \Rightarrow x=A x^{\prime}
\end{aligned}
$$

\Rightarrow If $d^{\prime}=d$ then \boldsymbol{x} can be reconstructed exactly from \boldsymbol{x}^{\prime}

PCA Derivation:

Relation between Eigenvalues and Variances

- The j-th largest eigenvalue of $\boldsymbol{R}_{\boldsymbol{x}}$ is the variance on the j-th PC:

$$
\begin{gathered}
\operatorname{var}\left(x_{j}^{\prime}\right)=\lambda_{j} \\
\operatorname{var}\left(x_{j}^{\prime}\right)=E\left[x_{j}^{\prime} x_{j}^{\prime}\right] \\
=E\left[\boldsymbol{a}_{j}^{T} \boldsymbol{x} \boldsymbol{x}^{T} \boldsymbol{a}_{j}\right]=\boldsymbol{a}_{j}^{T} E\left[\boldsymbol{x} \boldsymbol{x}^{T}\right] \boldsymbol{a}_{j} \\
=\boldsymbol{a}_{j}^{T} \boldsymbol{R}_{\boldsymbol{x}} \boldsymbol{a}_{j}=\boldsymbol{a}_{j}^{T} \lambda_{j} \boldsymbol{a}_{j}=\lambda_{j}
\end{gathered}
$$

Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots$
-The Ist PC is the the eigenvector of the sample covariance matrix associated with the largest eigenvalue
-The 2nd PC $v 2$ is the the eigenvector of the sample covariance matrix associated with the second largest eigenvalue
-And so on ...

PCA Derivation:

Mean Square Error Approximation

- Incorporating only d^{\prime} eigenvectors corresponding to the largest eigenvalues $\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{d^{\prime}}\right]\left(d^{\prime}<d\right)$
- It minimizes MSE between \boldsymbol{x} and $\widehat{\boldsymbol{x}}=\boldsymbol{A} \boldsymbol{x}^{\prime}$:

$$
\begin{gathered}
J(\boldsymbol{A})=E\left[\|\boldsymbol{x}-\widehat{\boldsymbol{x}}\|^{2}\right]=E\left[\left\|\boldsymbol{x}-\boldsymbol{A} \boldsymbol{x}^{\prime}\right\|^{2}\right] \\
\left.=E\left[\left\|\sum_{j=d^{\prime}+1}^{d} x_{j}^{\prime} \boldsymbol{a}_{j}\right\|^{2}\right]\right] \\
=E\left[\sum_{j=d^{\prime}+1}^{d} \sum_{k=d^{\prime}+1}^{d} x_{j}^{\prime} \boldsymbol{a}_{j}^{T} \boldsymbol{a}_{k} x_{k}^{\prime}\right]=E\left[\sum_{j=d^{\prime}+1}^{d} x_{j}^{\prime 2}\right] \\
=\sum_{j=d^{\prime}+1}^{d} E\left[x_{j}^{\prime 2}\right]=\sum_{j=d^{\prime}+1}^{d} \lambda_{j} \quad \begin{array}{l}
\text { Sum of the } d-d^{\prime} \text { smallest } \\
\text { eigenvalues }
\end{array}
\end{gathered}
$$

PCA Derivation:

Mean Square Error Approximation

- In general, it can also be shown MSE is minimized compared to any other approximation of \boldsymbol{x} by any d^{\prime}-dimensional orthonormal basis
b without first assuming that the axes are eigenvectors of the correlation matrix, this result can also be obtained.
- If the data is mean-centered in advance, $\boldsymbol{R}_{\boldsymbol{x}}$ and $\boldsymbol{C}_{\boldsymbol{x}}$ (covariance matrix) will be the same.
${ }^{\text {b }}$ However, in the correlation version when $\boldsymbol{C}_{\boldsymbol{x}} \neq \boldsymbol{R}_{\boldsymbol{x}}$ the approximation is not, in general, a good one (although it is a minimum MSE solution)

PCA on Faces: "Eigenfaces"

PCA on Faces: "Eigenfaces"

Average face

For eigen faces
"gray" = 0,
"white" > 0,
"black" < 0

PCA on Faces:

\boldsymbol{x} is a $112 \times 92=10304$ dimensional vector containing intensity of the pixels of this image

Feature vector $=\left[x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{d^{\prime}}^{\prime}\right]$
$x_{i}^{\prime}=P C_{i}^{T} \boldsymbol{x} \longrightarrow$ The projection of \boldsymbol{x} on the i-th PC

Average
Face

PCA on Faces: Reconstructed Face

d'=1
$d^{\prime}=2$
d'=4
d'=8
$d^{\prime}=16$

d'=256

Original Image

Dimensionality Reduction by PCA

- In high-dimensional problems, data sometimes lies near a linear subspace (small variability around this subspace can be considered as noise)
- Only keep data projections onto principal components with large eigenvalue
- Might lose some info, but if eigenvalues are small, do not lose much

Kernel PCA

- Kernel extension of PCA

data (approximately) lies on a lower dimensional non-linear space

PCA and LDA: Drawbacks

- PCA drawback: An excellent information packing transform does not necessarily lead to a good class separability.
- The directions of the maximum variance may be useless for classification purpose

- LDA drawback

Singularity or under-sampled problem (when $N<d$)

- Example: gene expression data, images, text documents
- Can reduces dimension only to $d^{\prime} \leq C-1$ (unlike PCA)

PCA vs. LDA

- Although LDA often provide more suitable features for classification tasks, PCA might outperform LDA in some situations:
v when the number of samples per class is small (overfitting problem of LDA)
* when the number of the desired features is more than $C-1$
- Advances in the last decade:
- Semi-supervised feature extraction
- E.g., PCA+LDA, Regularized LDA, Locally FDA (LFDA)

Singular Value Decomposition (SVD)

- Given a matrix $X \in \mathbb{R}^{N \times d}$, the $S V D$ is a decomposition:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}
$$

- \boldsymbol{S} is a diagonal matrix with the singular values $\sigma_{1}, \ldots, \sigma_{d}$ of X.
- Columns of $\boldsymbol{U}, \boldsymbol{V}$ are orthonormal matrices

Singular Value Decomposition (SVD)

- Given a matrix $\boldsymbol{X} \in \mathbb{R}^{N \times d}$, the SVD is a decomposition:

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}
$$

- SVD of \boldsymbol{X} is related to eigen-decomposition of $\boldsymbol{X}^{T} \boldsymbol{X}$ and $\boldsymbol{X} \boldsymbol{X}^{T}$.
- $\boldsymbol{X}^{T} \boldsymbol{X}=\boldsymbol{V} \boldsymbol{S} \boldsymbol{U}^{T} \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T}=\boldsymbol{V} \boldsymbol{S}^{2} \boldsymbol{V}^{T}$
> so \boldsymbol{V} contains eigenvectors of $\boldsymbol{X}^{T} \boldsymbol{X}$ and \boldsymbol{S}^{2} includes its eigenvalues $\left(\lambda_{i}\right.$ $\left.=\sigma_{i}^{2}\right)$
- $\boldsymbol{X} \boldsymbol{X}^{T}=\boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{T} \boldsymbol{V} \boldsymbol{S} \boldsymbol{U}^{T}=\boldsymbol{U} \boldsymbol{S}^{2} \boldsymbol{U}^{T}$
\square so \boldsymbol{U} contains eigenvectors of $\boldsymbol{X} \boldsymbol{X}^{T}$ and \boldsymbol{S}^{2} includes its eigenvalues $\left(\lambda_{i}\right.$ $\left.=\sigma_{i}^{2}\right)$
- In fact, we can view each row of $U S$ as the coordinates of an example along the axes given by the eigenvectors.

Independent Component Analysis (ICA)

- PCA:
- The transformed dimensions will be uncorrelated from each other
- Orthogonal linear transform
- Only uses second order statistics (i.e., covariance matrix)
- ICA:
- The transformed dimensions will be as independent as possible.
, Non-orthogonal linear transform
- High-order statistics can also used

Uncorrelated and Independent

Uncorrelated: $\operatorname{cov}\left(X_{1}, X_{2}\right)=0$ Independent: $P\left(X_{1}, X_{2}\right)=P\left(X_{1}\right) P\left(X_{2}\right)$

- Non-Gaussian
- Independent \Rightarrow Uncorrelated
- Uncorrelated \nRightarrow Independent

ICA: Cocktail party problem

- Cocktail party problem
> d speakers are speaking simultaneously and any microphone records only an overlapping combination of these voices.
\square Each microphone records a different combination of the speakers' voices.
- Using these d microphone recordings, can we separate out the original d speakers' speech signals?
- Mixing matrix A :

$$
x=A s
$$

- Unmixing matrix A^{-1} :

$$
s=A^{-1} x
$$

$s_{j}^{(i)}$: sound that speaker j was uttering at time i.
$x_{j}^{(i)}$: acoustic reading recorded by microphone j at time i.

ICA

- Find a linear transformation $\boldsymbol{x}=\boldsymbol{A} \boldsymbol{s}$
- for which dimensions of $\boldsymbol{s}=\left[s_{1}, s_{2}, \ldots, s_{d}\right]^{T}$ are statistically independent

$$
p\left(s_{1}, \ldots, s_{d}\right)=p_{1}\left(s_{1}\right) p_{2}\left(s_{2}\right) \ldots p_{d}\left(s_{d}\right)
$$

- Algorithmically, we need to identify matrix \boldsymbol{A} and sources \boldsymbol{s} where $\boldsymbol{x}=\boldsymbol{A s}$ such that the mutual information between $s_{1}, s_{2}, \ldots, s_{d}$ is minimized:

$$
I\left(s_{1}, s_{2}, \ldots, s_{d}\right)=\sum_{i=1}^{d} H\left(s_{i}\right)-H\left(s_{1}, s_{2}, \ldots, s_{d}\right)
$$

