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Topics

 Beyond linear regression models

 Evaluation & model selection

 Regularization

 Probabilistic perspective for the regression problem
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Recall: Linear regression (squared loss)

 Linear regression functions

𝑓 ∶ ℝ → ℝ 𝑓(𝑥;𝒘) = 𝑤0 +𝑤1𝑥

𝑓 ∶ ℝd → ℝ 𝑓(𝒙;𝒘) = 𝑤0 + 𝑤1𝑥1+ . . . 𝑤𝑑𝑥𝑑

 Minimizing the squared loss for linear regression

𝐽(𝒘) = 𝒚 − 𝑿𝒘 2
2

 We obtain  𝒘 = 𝑿𝑇𝑿 −𝟏 𝑿𝑇𝒚

3

𝒘 = 𝑤0,𝑤1,...,𝑤𝑑
𝑇 are the 

parameters we need to set.



Beyond linear regression

 How to extend the linear regression to non-linear

functions?

 Transform the data using basis functions

 Learn a linear regression on the new feature vectors (obtained

by basis functions)
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Beyond linear regression

 𝑚𝑡ℎ order polynomial regression (univariate 𝑓 ∶ ℝ ⟶ ℝ)

𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥+ . . . +𝑤𝑚−1𝑥
𝑚−1 +𝑤𝑚 𝑥

𝑚

 Solution: 𝒘= 𝑿′𝑇𝑿′
−𝟏
𝑿′𝑇𝒚

𝒚 =

𝑦1
⋮
𝑦𝑛

𝑿′ =

1 𝑥 1
1

𝑥 1
2
⋯ 𝑥 1

𝑚

1 𝑥 2
1

𝑥 2
2
⋯ 𝑥 2

𝑚

⋮
1

⋮

𝑥 𝑛
1

⋮

𝑥 𝑛
2
⋮
⋯

⋮

𝑥 𝑛
1

𝒘 =

 𝒘0
 𝒘1
⋮
 𝒘𝑚
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Polynomial regression: example

6

𝑚 = 1
𝑚 = 3

𝑚 = 5 𝑚 = 7



Generalized linear

 Linear combination of fixed non-linear function of the

input vector

𝑓(𝒙;𝒘) = 𝑤0 + 𝑤1𝜙1(𝒙)+ . . . 𝑤𝑚𝜙𝑚(𝒙)

{𝜙1(𝒙), . . . , 𝜙𝑚(𝒙)}: set of basis functions (or features)

𝜙𝑖 𝒙 :ℝ
𝑑 → ℝ
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Basis functions: examples

 Linear

 Polynomial (univariate)
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Basis functions: examples

 Gaussian:𝜙𝑗 𝒙 = 𝑒𝑥𝑝 −
𝒙−𝒄𝑗

2

2𝜎𝑗
2

 Sigmoid:𝜙𝑗 𝒙 = 𝜎
𝒙−𝒄𝑗

𝜎𝑗
𝜎 𝑎 =

1

1+exp(−𝑎)
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Radial Basis Functions: prototypes 

 Predictions based on similarity to “prototypes”:

𝜙𝑗 𝒙 = 𝑒𝑥𝑝 −
1

2𝜎𝑗
2 𝒙 − 𝒄𝑗

2

 Measuring the similarity to the prototypes 𝒄1, … , 𝒄𝑚
 σ2 controls how quickly it vanishes as a function of the

distance to the prototype.

 Training examples themselves could serve as prototypes
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Generalized linear: optimization
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𝐽 𝒘 = 
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙 𝑖 ; 𝒘
2

= 
𝑖=1

𝑛

𝑦 𝑖 −𝒘𝑇𝝓 𝒙 𝑖
2

𝒚 =
𝑦(1)

⋮
𝑦(𝑛)

𝚽 =

1 𝜙1(𝒙
(1)
) ⋯ 𝜙𝑚(𝒙

(1)
)

1
⋮
𝜙1(𝒙

(2)
)

⋮

⋯
⋱
𝜙𝑚(𝒙

(2)
)

⋮

1 𝜙1(𝒙
(𝑛)
) ⋯ 𝜙𝑚(𝒙

(𝑛)
)

𝒘 =

𝑤0
𝑤1
⋮
𝑤𝑚

 𝒘= 𝚽𝑇𝚽
−𝟏
𝚽𝑇𝒚



Model complexity and overfitting

 With limited training data, models may achieve zero

training error but a large test error.

 Over-fitting: when the training loss no longer bears any

relation to the test (generalization) loss.

 Fails to generalize to unseen examples.
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1

𝑛
 
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙
𝑖
; 𝜽

2

≈ 0Training

(empirical) loss

Expected  

(test) loss
E𝐱,y 𝑦 − 𝑓 𝒙; 𝜽

2
≫ 0



Polynomial regression
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𝑚 = 0 𝑚 = 1

𝑚 = 3 𝑚 = 9

𝑦

𝑦

𝑦

𝑦

[Bishop]



Polynomial regression: training and test error
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𝑚

𝑅𝑀𝑆𝐸 =
 𝑖=1
𝑛 𝑦 𝑖 − 𝑓 𝒙

𝑖
; 𝜽

2

𝑛

[Bishop]



Over-fitting causes
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 Model complexity

 E.g., Model with a large number of parameters (degrees of

freedom)

 Low number of training data

 Small data size compared to the complexity of the model



Model complexity
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 Example:

 Polynomials with larger 𝑚 are becoming increasingly tuned to

the random noise on the target values.
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𝑚 = 0 𝑚 = 1

𝑚 = 3 𝑚 = 9

𝑦

𝑦

𝑦

𝑦

[Bishop]



Number of training data & overfitting
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 Over-fitting problem becomes less severe as the size of

training data increases.

𝑚 = 9 𝑚 = 9

𝑛 = 15 𝑛 = 100

[Bishop]



How to evaluate the learner’s performance?
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 Generalization error: true (or expected) error that we

would like to optimize

 Two ways to assess the generalization error is:

 Practical: Use a separate data set to test the model

 Theoretical: Law of Large numbers

 statistical bounds on the difference between training and expected

errors



Evaluation and model selection

19

 Evaluation:

 We need to measure how well the learned function can

predicts the target for unseen examples

 Model selection:

 Most of the time we need to select among a set of models

 Example: polynomials with different degree 𝑚

 and thus we need to evaluate these models first



Avoiding over-fitting 
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 Determine a suitable value for model complexity

 Simple hold-out method

 Cross-validation

 Regularization (Occam’s Razor)

 Explicit preference towards simple models

 Penalize for the model complexity in the objective function

 Bayesian approach



Simple hold-out: model selection
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 Steps:

 Divide training data into training and validation set 𝑣_𝑠𝑒𝑡

 Use only the training set to train a set of models

 Evaluate each learned model on the validation set

 𝐽𝑣 𝒘 =
1

𝑣_𝑠𝑒𝑡
 𝑖∈𝑣_𝑠𝑒𝑡 𝑦

(𝑖)
− 𝑓 𝒙

(𝑖)
; 𝒘

2

 Choose the best model based on the validation set error

 Usually, too wasteful of valuable training data

 Training data may be limited.

 On the other hand, small validation set give a relatively noisy

estimate of performance.



Simple hold out:

training, validation, and test sets
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 Simple hold-out chooses the model that minimizes error on

validation set.

 𝐽𝑣  𝒘 is likely to be an optimistic estimate of generalization

error.

 extra parameter (e.g., degree of polynomial) is fit to this set.

 Estimate generalization error for the test set

 performance of the selected model is finally evaluated on the test set

Training

Validation

Test



Cross-Validation (CV): Evaluation
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 𝑘-fold cross-validation steps:

 Shuffle the dataset and randomly partition training data into 𝑘 groups of

approximately equal size

 for 𝑖 = 1 to 𝑘

 Choose the 𝑖-th group as the held-out validation group

 Train the model on all but the 𝑖-th group of data

 Evaluate the model on the held-out group

 Performance scores of the model from 𝑘 runs are averaged.

 The average error rate can be considered as an estimation of the true

performance.

…

…

…

…

…

First run

Second run

(k-1)th run

k-th run



Cross-Validation (CV): Model Selection
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 For each model we first find the average error find by CV.

 The model with the best average performance is

selected.



Cross-validation: polynomial regression example

 5-fold CV

 100 runs

 average
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𝑚 = 1
CV: 𝑀𝑆𝐸 = 0.30

𝑚 = 3
CV: 𝑀𝑆𝐸 = 1.45

𝑚 = 5
CV: 𝑀𝑆𝐸 = 45.44

𝑚 = 7
CV: 𝑀𝑆𝐸 = 31759



Leave-One-Out Cross Validation (LOOCV)
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 When data is particularly scarce, cross-validation with 𝑘
= 𝑁

 Leave-one-out treats each training sample in turn as a test

example and all other samples as the training set.

 Use for small datasets

 When training data is valuable

 LOOCV can be time expensive as 𝑁 training steps are

required.



Regularization
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 Adding a penalty term in the cost function to discourage

the coefficients from reaching large values.

 Ridge regression (weight decay):

𝐽 𝒘 = 
𝑖=1

𝑛

𝑦 𝑖 −𝒘𝑇𝝓 𝒙 𝑖
2
+ 𝜆𝒘𝑇𝒘

 𝒘= 𝚽𝑇𝚽+ 𝜆𝑰
−𝟏
𝚽𝑇𝒚



Polynomial order
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 Polynomials with larger 𝑚 are becoming increasingly

tuned to the random noise on the target values.

 magnitude of the coefficients typically gets larger by increasing

𝑚.

[Bishop]



Regularization parameter
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 𝑤1
 𝑤2
 𝑤3
 𝑤4
 𝑤5
 𝑤6
 𝑤7
 𝑤8
 𝑤9

𝑚 = 9

 𝑤0

𝑙𝑛𝜆 = −∞ 𝑙𝑛𝜆 = −18

[Bishop]



Regularization parameter
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 Generalization

 𝜆 now controls the effective complexity of the model and

hence determines the degree of over-fitting

[Bishop]



Choosing the regularization parameter 
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 A set of models with different values of 𝜆.

 Find  𝒘 for each model based on training data

 Find 𝐽𝑣( 𝒘) (or 𝐽𝑐𝑣( 𝒘)) for each model

 𝐽𝑣 𝒘 =
1

𝑛_𝑣
 𝑖∈𝑣_𝑠𝑒𝑡 𝑦

(𝑖)
− 𝑓 𝑥

(𝑖)
;𝒘

2

 Select the model with the best 𝐽𝑣( 𝒘) (or 𝐽𝑐𝑣( 𝒘))



The approximation-generailization trade-off
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 Small true error shows good approximation of 𝑓 out of

sample

 More complexℋ ⇒ better chance of approximating 𝑓

 Less complexℋ ⇒ better chance of generalization out of 𝑓



Complexity of Hypothesis Space: Example 
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P
ri

ce

Size

P
ri

ce

Size

P
ri

ce

Size

𝑤0 + 𝑤1𝑥 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥

2 + 𝑤3𝑥
3 + 𝑤4𝑥

4

This example has been adapted from: Prof.  Andrew Ng’s slides

More complex ℋLess complex ℋ



Complexity of Hypothesis Space: Example 
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P
ri

ce

Size

P
ri

ce

Size

P
ri

ce

Size

𝑤0 + 𝑤1𝑥 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥

2 + 𝑤3𝑥
3 + 𝑤4𝑥

4

This example has been adapted from: Prof.  Andrew Ng’s slides

More complex ℋLess complex ℋ



Complexity of Hypothesis Space: Example 
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degree of polynomial 𝑚

e
rr

o
r 𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

𝐽𝑣 𝒘 =
1

𝑛_𝑣
 
𝑖∈𝑣𝑎𝑙_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝒙

(𝑖)
; 𝒘

2

𝐽𝑡𝑟𝑎𝑖𝑛 𝒘 =
1

𝑛_𝑡𝑟𝑎𝑖𝑛
 
𝑖∈𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝒙

(𝑖)
; 𝒘

2



Complexity of Hypothesis Space
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 Less complexℋ:

 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) ≈ 𝐽𝑣( 𝒘) and 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) is very high

 More complexℋ:

 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) ≪ 𝐽𝑣( 𝒘) and 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) is low

degree of polynomial 𝑚

e
rr

o
r

𝐽𝑣( 𝒘)

𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘)



Size of training set
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𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2

(training set size)

e
rr

o
r

𝑛

𝐽𝑣 𝒘 =
1

𝑛_𝑣
 
𝑖∈𝑣𝑎𝑙_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝑥

(𝑖)
; 𝒘

2

𝐽𝑡𝑟𝑎𝑖𝑛 𝒘 =
1

𝑛_𝑡𝑟𝑎𝑖𝑛
 
𝑖∈𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝑥

(𝑖)
; 𝒘

2

𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

This slide has been adapted from: Prof. Andrew Ng’s slides



Less complex ℋ
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size

p
ri

ce

size

p
ri

ce

𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥

If model is very simple, getting more

training data will not (by itself) help

much.

(training set size)

𝑛

e
rr

o
r

𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

High 

error

This slide has been adapted from: Prof. Andrew Ng’s slides



More complex ℋ
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(training set size)

e
rr

o
r

𝑛

𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

Gap

size

p
ri

ce

size

p
ri

ce

For more complex models, getting more 

training data is usually helps.

𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥 + ⋯𝑤10𝑥
10

This slide has been adapted from: Prof. Andrew Ng’s slides



Regularization: Example
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𝑓 𝑥;𝒘 = 𝑤0 +𝑤1𝑥 + 𝑤2𝑥
2 +𝑤3 𝑥

3 +𝑤4 𝑥
4

𝐽 𝒘 =
1

𝑛
 
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝑥 𝑖 ; 𝒘
2
+ 𝜆𝒘𝑇𝒘

Large 𝜆x
(Prefer to more simple models)

Intermediate 𝜆

P
ri

ce

Size

P
ri

ce

Size

P
ri

ce

Size

Small 𝜆
(Prefer to more complex models)

𝑤1 = 𝑤2 ≈ 0 𝜆 = 0

This example has been adapted from: Prof.  Andrew Ng’s slides



Model complexity: Bias-variance trade-off
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 Least squares, can lead to severe over-fitting if complex models

are trained using data sets of limited size.

 A frequentist viewpoint of the model complexity issue, known

as the bias-variance trade-off.



Formal discussion on bias, variance, and noise
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 Best unrestricted regression function

 Noise

 Bias and variance



The learning diagram: deterministic target
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ℎ:𝒳 → 𝒴

𝑓:𝒳 → 𝒴

𝑥 1 , 𝑦(1) , … , 𝑥 𝑁 , 𝑦(𝑁)

𝑥 1 , … , 𝑥 𝑁

[Y.S. Abou Mostafa, et. al]



The learning diagram including noisy target

44

 Type equation here.

ℎ:𝒳 → 𝒴

𝑓:𝒳 → 𝒴

𝑥 1 , 𝑦(1) , … , 𝑥 𝑁 , 𝑦(𝑁)

𝑥 1 , … , 𝑥 𝑁

𝑓 𝒙 = ℎ(𝒙)

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃(𝑦|𝑥)

Target 

distribution

Distribution 

on features

[Y.S. Abou Mostafa, et. al]



Best unrestricted regression function

 If we know the joint distribution 𝑃(𝒙, 𝑦) and no

constraints on the regression function?

 cost function: mean squared error

ℎ∗ = argmin
ℎ:ℝ𝑑→ℝ

𝔼𝒙,𝑦 𝑦 − ℎ 𝒙
2

ℎ∗ 𝒙 = 𝔼𝑦|𝒙[𝑦]

45



Best unrestricted regression function: Proof

𝔼𝒙,𝑦 𝑦 − ℎ 𝒙
2
= 𝑦 − ℎ 𝒙

2
𝑝 𝒙, 𝑦 𝑑𝒙𝑑𝑦

 For each 𝒙 separately minimize loss since ℎ(𝒙) can be chosen
independently for each different 𝒙:

𝛿𝔼𝒙,𝑦 𝑦 − ℎ 𝒙
2

𝛿ℎ(𝒙)
=  2 𝑦 − ℎ 𝒙 𝑝 𝒙, 𝑦 𝑑𝑦 = 0

⇒ ℎ 𝒙 =
 𝑦𝑝 𝒙, 𝑦 𝑑𝑦

 𝑝 𝒙, 𝑦 𝑑𝑦
=
 𝑦𝑝 𝒙, 𝑦 𝑑𝑦

𝑝 𝒙
=  𝑦𝑝 𝑦|𝒙 𝑑𝑦 = 𝔼𝑦|𝒙 𝑦

⟹ ℎ∗ 𝒙 = 𝔼𝑦|𝒙[𝑦]

46



Error decomposition

47

𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙 = 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − 𝑦 2

= 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 2

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2
+ 𝔼𝒙,𝑦 ℎ 𝒙 − 𝒚

2

+2𝔼𝒙,𝑦 𝑓𝒟 𝒙 − ℎ 𝒙 ℎ 𝒙 − 𝑦

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 𝔼𝑦|𝒙 ℎ 𝒙 − 𝑦

0

Expected loss



Error decomposition

48

𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙 = 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − 𝑦 2

= 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 2

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2
+ 𝔼𝒙,𝑦 ℎ 𝒙 − 𝒚

2

+2𝐸𝒙,𝑦 𝑓 𝒙;  𝒘 − ℎ 𝒙 ℎ 𝒙 − 𝑦

 Noise shows the irreducible minimum value of the loss 

function

0

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

noise



Expectation of true error

49

𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙 = 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − 𝑦 2

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2
+ 𝑛𝑜𝑖𝑠𝑒

𝔼𝒟 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2

= 𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2

We now want to focus on 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2

.



The average hypothesis
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 𝑓 𝒙 ≡ 𝐸𝒟 𝑓𝒟 𝒙

 𝑓 𝒙 ≈
1

𝐾
 

𝑘=1

𝐾

𝑓𝒟 𝑘 𝒙

𝐾 training sets (of size 𝑁) sampled from 𝑃(𝒙, 𝑦): 

𝒟(1), 𝒟(2), … , 𝒟(𝐾)



Using the average hypothesis
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2

= 𝔼𝒟 𝑓𝒟 𝒙 −  𝑓 𝒙 +  𝑓 𝒙 − ℎ 𝒙
2

= 𝔼𝒟  𝑓𝒟 𝒙 −  𝑓 𝒙
2
+  𝑓 𝒙 − ℎ 𝒙

2



Bias and variance
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2
= 𝔼𝒟 𝑓𝒟 𝒙 −  𝑓 𝒙

2
+  𝑓 𝒙 − ℎ 𝒙

2

𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2
= 𝔼𝒙 var 𝒙 + bias(𝒙)

= var + bias

var(𝒙) bias(𝒙)



Bias-variance trade-off
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var = 𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 −  𝑓 𝒙
2

bias = 𝔼𝒙  𝑓 𝒙 − ℎ 𝒙

More complex ℋ ⇒ lower bias but higher variance 

ℎ

ℎ

[Y.S. Abou Mostafa, et. al]



Example: sin target
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 Only two training example 𝑁 = 2

 Two models used for learning:

 ℋ0: 𝑓 𝑥 = 𝑏

 ℋ1: 𝑓 𝑥 = 𝑎𝑥 + 𝑏

 Which is betterℋ0 orℋ1?



Learning from a training set
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ℋ0 ℋ1

[Y.S. Abou Mostafa, et. al]



Variance ℋ0
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 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Variance ℋ1
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 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Which is better?
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 𝑓(𝑥)
 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Lesson
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Match themodel complexity

to the data sources

not to the complexity of the target function.



Expected training and true error curves

60

 Errors vary with the number of training samples

𝐸train

𝐸train

𝐸true 𝐸true

expected true error: 𝔼𝒟 𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙

expected training error: 𝔼𝒟 𝐸𝑡𝑟𝑎𝑖𝑛 𝑓𝒟 𝒙

[Y.S. Abou Mostafa, et. al]



Regularization

61 [Y.S. Abou Mostafa, et. al]



Regularization: bias and variance 
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 𝑓(𝑥) 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Winner of ℋ0, ℋ1, and ℋ1 with regularization  
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[Y.S. Abou Mostafa, et. al]

 𝑓(𝑥)

 𝑓(𝑥)

ℋ1

 𝑓(𝑥)



Regularization and bias/variance
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𝐿 = 100 data sets

𝑛 = 25
𝑚 = 25

𝜆 is 

large

𝜆 is 

intermediate

𝜆 is 

small

[Bishop]



Learning curves of bias, variance, and noise
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[Bishop]



Bias-variance decomposition: summary
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 The noise term is unavoidable.

 The terms we are interested in are bias and variance.

 The approximation-generalization trade-off is seen in the

bias-variance decomposition.
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