Regression and generalization

CE-717: Machine Learning Sharif University of Technology

M. Soleymani Fall 2016

Topics

- Beyond linear regression models
- Evaluation & model selection
- Regularization
- Probabilistic perspective for the regression problem

Recall: Linear regression (squared loss)

Linear regression functions

$$f : \mathbb{R} \to \mathbb{R} \quad f(x; \boldsymbol{w}) = w_0 + w_1 x$$
$$f : \mathbb{R}^d \to \mathbb{R} \quad f(\boldsymbol{x}; \boldsymbol{w}) = w_0 + w_1 x_1 + \dots w_d x_d$$
$$\boldsymbol{w} = [w_0, w_1, \dots, w_d]^T \text{ are the parameters we need to set.}$$

Minimizing the squared loss for linear regression

$$J(\boldsymbol{w}) = \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_2^2$$

• We obtain $\widehat{w} = (X^T X)^{-1} X^T y$

Beyond linear regression

- How to extend the linear regression to non-linear functions?
 - Transform the data using basis functions
 - Learn a linear regression on the new feature vectors (obtained by basis functions)

Beyond linear regression

• m^{th} order polynomial regression (univariate $f : \mathbb{R} \to \mathbb{R}$)

$$f(x; w) = w_0 + w_1 x + \dots + w_{m-1} x^{m-1} + w_m x^m$$

Solution:
$$\widehat{w} = (X'^T X')^{-1} X'^T y$$

Generalized linear

Linear combination of fixed non-linear function of the input vector

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 \phi_1(\mathbf{x}) + \dots + w_m \phi_m(\mathbf{x})$$

 $\{\phi_1(\mathbf{x}), \dots, \phi_m(\mathbf{x})\}$: set of basis functions (or features) $\phi_i(\mathbf{x}) \colon \mathbb{R}^d \to \mathbb{R}$

Basis functions: examples

Linear

If
$$m = d$$
, $\phi_i(\mathbf{x}) = x_i$, $i = 1, ..., d$, then
 $f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + ... + w_d x_d$

Polynomial (univariate)

If
$$\phi_i(x) = x^i$$
, $i = 1, ..., m$, then
 $f(x; \mathbf{w}) = w_0 + w_1 x + ... + w_{m-1} x^{m-1} + w_m x^m$

Basis functions: examples

• Gaussian: $\phi_j(\mathbf{x}) = exp\left\{-\frac{(\mathbf{x}-\mathbf{c}_j)^2}{2\sigma_j^2}\right\}$

Sigmoid:
$$\phi_j(\mathbf{x}) = \sigma\left(\frac{\|\mathbf{x}-\mathbf{c}_j\|}{\sigma_j}\right)$$
 $\sigma(a) = \frac{1}{1+\exp(-a)}$

Radial Basis Functions: prototypes

Predictions based on similarity to "prototypes":

$$\phi_j(\mathbf{x}) = exp\left\{-\frac{1}{2\sigma_j^2} \|\mathbf{x} - \mathbf{c}_j\|^2\right\}$$

- Measuring the similarity to the prototypes c_1, \ldots, c_m
 - σ^2 controls how quickly it vanishes as a function of the distance to the prototype.
 - Training examples themselves could serve as prototypes

Generalized linear: optimization

$$J(\boldsymbol{w}) = \sum_{i=1}^{n} \left(y^{(i)} - f(\boldsymbol{x}^{(i)}; \boldsymbol{w}) \right)^{2}$$
$$= \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) \right)^{2}$$

$$\boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \boldsymbol{\Phi} = \begin{bmatrix} 1 & \phi_1(\boldsymbol{x}^{(1)}) & \cdots & \phi_m(\boldsymbol{x}^{(1)}) \\ 1 & \phi_1(\boldsymbol{x}^{(2)}) & \cdots & \phi_m(\boldsymbol{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(\boldsymbol{x}^{(n)}) & \cdots & \phi_m(\boldsymbol{x}^{(n)}) \end{bmatrix} \quad \boldsymbol{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}$$

$$\widehat{\boldsymbol{w}} = \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

Model complexity and overfitting

With limited training data, models may achieve zero training error but a large test error.

Training
(empirical) loss
$$\frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - f\left(x^{(i)}; \theta \right) \right)^2 \approx 0$$

Expected
$$F = \left\{ \left(y - f\left(x; \theta \right) \right)^2 \right\} \gg 0$$

(test) loss

 $\mathbf{E}_{\mathbf{x},\mathbf{y}}\left\{\left(y-f(\boldsymbol{x};\boldsymbol{\theta})\right)^{2}\right\}\gg 0$

- <u>Over-fitting</u>: when the training loss no longer bears any relation to the test (generalization) loss.
 - Fails to generalize to unseen examples.

Polynomial regression

Polynomial regression: training and test error

Over-fitting causes

- Model complexity
 - E.g., Model with a large number of parameters (degrees of freedom)
- Low number of training data
 - Small data size compared to the complexity of the model

Model complexity

• Example:

Polynomials with larger m are becoming increasingly tuned to the random noise on the target values.

Number of training data & overfitting

 Over-fitting problem becomes less severe as the size of training data increases.

[Bishop]

How to evaluate the learner's performance?

- Generalization error: true (or expected) error that we would like to optimize
- Two ways to assess the generalization error is:
 - Practical: Use a separate data set to test the model
 - Theoretical: Law of Large numbers
 - statistical bounds on the difference between training and expected errors

Evaluation and model selection

• Evaluation:

We need to measure how well the learned function can predicts the target for unseen examples

Model selection:

Most of the time we need to select among a set of models

- Example: polynomials with different degree m
- and thus we need to evaluate these models first

Avoiding over-fitting

- Determine a suitable value for model complexity
 - Simple hold-out method
 - Cross-validation
- Regularization (Occam's Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity in the objective function
- Bayesian approach

Simple hold-out: model selection

Steps:

- Divide training data into <u>training</u> and <u>validation set</u> v_set
- Use only the training set to train a set of models
- Evaluate each learned model on the validation set

$$J_{v}(\boldsymbol{w}) = \frac{1}{|v_{set}|} \sum_{i \in v_{set}} \left(y^{(i)} - f\left(\boldsymbol{x}^{(i)}; \boldsymbol{w}\right) \right)^{2}$$

- Choose the best model based on the validation set error
- Usually, too wasteful of valuable training data
 - Training data may be limited.
 - On the other hand, small validation set give a relatively noisy estimate of performance.

Simple hold out: training, validation, and test sets

- Simple hold-out chooses the model that minimizes error on validation set.
- $J_v(\widehat{w})$ is likely to be an optimistic estimate of generalization error.
 - extra parameter (e.g., degree of polynomial) is fit to this set.
- Estimate generalization error for the test set
 - performance of the selected model is finally evaluated on the test set

Training	
 Validation	
Test	

Cross-Validation (CV): Evaluation

- k-fold cross-validation steps:
 - Shuffle the dataset and randomly partition training data into k groups of approximately equal size
 - for i = 1 to k

- Choose the *i*-th group as the held-out validation group
- Train the model on all but the *i*-th group of data
- Evaluate the model on the held-out group
- Performance scores of the model from k runs are averaged.
 - The average error rate can be considered as an estimation of the true performance.

Cross-Validation (CV): Model Selection

For each model we first find the average error find by CV.

The model with the best average performance is selected.

Leave-One-Out Cross Validation (LOOCV)

- When data is particularly scarce, cross-validation with k = N
 - Leave-one-out treats each training sample in turn as a test example and all other samples as the training set.
- Use for small datasets
 - When training data is valuable
 - LOOCV can be time expensive as N training steps are required.

Regularization

- Adding a penalty term in the cost function to discourage the coefficients from reaching large values.
- Ridge regression (weight decay):

$$J(\boldsymbol{w}) = \sum_{i=1}^{n} \left(y^{(i)} - \boldsymbol{w}^{T} \boldsymbol{\phi} (\boldsymbol{x}^{(i)}) \right)^{2} + \lambda \boldsymbol{w}^{T} \boldsymbol{w}$$
$$\widehat{\boldsymbol{w}} = \left(\boldsymbol{\Phi}^{T} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{T} \boldsymbol{y}$$

Polynomial order

- Polynomials with larger m are becoming increasingly tuned to the random noise on the target values.
 - magnitude of the coefficients typically gets larger by increasing m.

	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

[Bishop]

Regularization parameter

		m = 9	
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
\widehat{W}_0	0.35	0.35	0.13
\widehat{W}_1	232.37	4.74	-0.05
\widehat{W}_2	-5321.83	-0.77	-0.06
\widehat{W}_3	48568.31	-31.97	-0.05
\widehat{W}_4	-231639.30	-3.89	-0.03
\widehat{W}_{5}	640042.26	55.28	-0.02
Ŵĸ	-1061800.52	41.32	-0.01
\widehat{W}_7	1042400.18	-45.95	-0.00
ŵ	-557682.99	-91.53	0.00
\widehat{W}_{9}	125201.43	72.68	0.01

[Bishop]

Regularization parameter

Generalization

30

 \triangleright λ now controls the effective complexity of the model and hence determines the degree of over-fitting

Choosing the regularization parameter

• A set of models with different values of λ .

- Find \widehat{w} for each model based on training data
- Find $J_{v}(\widehat{w})$ (or $J_{cv}(\widehat{w})$) for each model $J_{v}(w) = \frac{1}{n_{v}} \sum_{i \in v_{set}} \left(y^{(i)} - f\left(x^{(i)}; w \right) \right)^{2}$
- Select the model with the best $J_{v}(\widehat{w})$ (or $J_{cv}(\widehat{w})$)

The approximation-generailization trade-off

- \blacktriangleright Small true error shows good approximation of f out of sample
- More complex $\mathcal{H} \Rightarrow$ better chance of approximating f
- Less complex $\mathcal{H} \Rightarrow$ better chance of generalization out of f

Complexity of Hypothesis Space: Example

Less complex ${\mathcal H}$

More complex \mathcal{H}

This example has been adapted from: Prof. Andrew Ng's slides

Complexity of Hypothesis Space: Example

Less complex ${\mathcal H}$

More complex \mathcal{H}

This example has been adapted from: Prof. Andrew Ng's slides

Complexity of Hypothesis Space: Example

Complexity of Hypothesis Space

• Less complex \mathcal{H} :

• $J_{train}(\widehat{w}) \approx J_{v}(\widehat{w})$ and $J_{train}(\widehat{w})$ is very high

More complex *H*:
J_{train}(ŵ) ≪ J_v(ŵ) and J_{train}(ŵ) is low

This slide has been adapted from: Prof. Andrew Ng's slides

This slide has been adapted from: Prof. Andrew Ng's slides

 $w_1 = w_2 \approx 0$

 $\lambda = 0$

This example has been adapted from: Prof. Andrew Ng's slides

Model complexity: Bias-variance trade-off

- Least squares, can lead to severe over-fitting if complex models are trained using data sets of limited size.
- A frequentist viewpoint of the model complexity issue, known as the *bias-variance* trade-off.

Formal discussion on bias, variance, and noise

- Best unrestricted regression function
- Noise
- Bias and variance

The learning diagram: deterministic target

[Y.S.Abou Mostafa, et. al]

The learning diagram including noisy target

[Y.S. Abou Mostafa, et. al]

Best unrestricted regression function

- If we know the joint distribution P(x, y) and no constraints on the regression function?
 - cost function: mean squared error

$$h^* = \operatorname*{argmin}_{h:\mathbb{R}^d \to \mathbb{R}} \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \left[\left(\boldsymbol{y} - \boldsymbol{h}(\boldsymbol{x}) \right)^2 \right]$$

 $h^*(\boldsymbol{x}) = \mathbb{E}_{y|\boldsymbol{x}}[y]$

Best unrestricted regression function: Proof

$$\mathbb{E}_{\boldsymbol{x},\boldsymbol{y}}\left[\left(\boldsymbol{y}-\boldsymbol{h}(\boldsymbol{x})\right)^{2}\right] = \iint \left(\boldsymbol{y}-\boldsymbol{h}(\boldsymbol{x})\right)^{2} \boldsymbol{p}(\boldsymbol{x},\boldsymbol{y}) d\boldsymbol{x} d\boldsymbol{y}$$

For each x separately minimize loss since h(x) can be chosen independently for each different x:

$$\frac{\delta \mathbb{E}_{x,y} \left[\left(y - h(x) \right)^2 \right]}{\delta h(x)} = \int 2 \left(y - h(x) \right) p(x,y) dy = 0$$

$$\Rightarrow h(x) = \frac{\int y p(x,y) dy}{\int p(x,y) dy} = \frac{\int y p(x,y) dy}{p(x)} = \int y p(y|x) dy = \mathbb{E}_{y|x} [y]$$

$$\Rightarrow h^*(\mathbf{x}) = \mathbb{E}_{y|\mathbf{x}}[y]$$

 $(x, y) \sim P$ h(x) : minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(\boldsymbol{x})) = \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}}[(f_{\mathcal{D}}(\boldsymbol{x}) - \boldsymbol{y})^2] \qquad \text{Expected loss}$$

0

$$= \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \left[(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x}) + h(\boldsymbol{x}) - \boldsymbol{y})^2 \right]$$

$$= \mathbb{E}_{x} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x}) \right)^{2} \right] + \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \left[(h(\boldsymbol{x}) - \boldsymbol{y})^{2} \right] \\ + 2\mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x}) \right) (h(\boldsymbol{x}) - \boldsymbol{y}) \right] \\ \mathbb{E}_{x} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x}) \right) \mathbb{E}_{\boldsymbol{y}|\boldsymbol{x}} \left[(h(\boldsymbol{x}) - \boldsymbol{y}) \right] \right]$$

 $(x, y) \sim P$ h(x) : minimizes the expected loss

$$E_{true}(f_{\mathcal{D}}(\boldsymbol{x})) = \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}}[(f_{\mathcal{D}}(\boldsymbol{x}) - \boldsymbol{y})^2]$$

$$= \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}} \left[(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x}) + h(\boldsymbol{x}) - \boldsymbol{y})^2 \right]$$

$$= \mathbb{E}_{x} \left[\left(f_{\mathcal{D}}(x) - h(x) \right)^{2} \right] + \mathbb{E}_{x,y} \left[(h(x) - y)^{2} \right] + 0$$

 Noise shows the irreducible minimum value of the loss function Expectation of true error

$$E_{true}(f_{\mathcal{D}}(\boldsymbol{x})) = \mathbb{E}_{\boldsymbol{x},\boldsymbol{y}}[(f_{\mathcal{D}}(\boldsymbol{x}) - \boldsymbol{y})^{2}]$$
$$= \mathbb{E}_{\boldsymbol{x}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right] + noise$$

$$\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\boldsymbol{x}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]\right]$$
$$= \mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]\right]$$

We now want to focus on $\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$.

The average hypothesis

 $\bar{f}(\boldsymbol{x}) \equiv E_{\mathcal{D}}[f_{\mathcal{D}}(\boldsymbol{x})]$

$$\bar{f}(\boldsymbol{x}) \approx \frac{1}{K} \sum_{k=1}^{K} f_{\mathcal{D}^{(k)}}(\boldsymbol{x})$$

K training sets (of size *N*) sampled from P(x, y): $\mathcal{D}^{(1)}, \mathcal{D}^{(2)}, \dots, \mathcal{D}^{(K)}$ Using the average hypothesis

$$\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$
$$= \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x}) + \bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

$$= \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})\right)^{2} + \left(\bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]$$

Bias and variance

$$\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right] = \mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})\right)^{2}\right] + \left(\bar{f}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}$$

$$\operatorname{var}(\boldsymbol{x})$$

$$\operatorname{bias}(\boldsymbol{x})$$

$$\mathbb{E}_{\boldsymbol{x}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - h(\boldsymbol{x})\right)^{2}\right]\right] = \mathbb{E}_{\boldsymbol{x}}\left[\operatorname{var}(\boldsymbol{x}) + \operatorname{bias}(\boldsymbol{x})\right]$$
$$= \operatorname{var} + \operatorname{bias}$$

Bias-variance trade-off

$$\operatorname{var} = \mathbb{E}_{\boldsymbol{x}} \left[\mathbb{E}_{\mathcal{D}} \left[\left(f_{\mathcal{D}}(\boldsymbol{x}) - \overline{f}(\boldsymbol{x}) \right)^2 \right] \right]$$

bias =
$$\mathbb{E}_{\mathbf{x}}[\bar{f}(\mathbf{x}) - h(\mathbf{x})]$$

More complex $\mathcal{H} \Rightarrow$ lower bias but higher variance

[Y.S. Abou Mostafa, et. al]

Example: sin target

• Only two training example N = 2

- Two models used for learning:
 - $\mathcal{H}_0: f(x) = b$
 - $\mathbf{\mathcal{H}_1}: f(x) = \mathbf{a}x + \mathbf{b}$
- Which is better \mathcal{H}_0 or \mathcal{H}_1 ?

Learning from a training set

[Y.S. Abou Mostafa, et. al]

Variance \mathcal{H}_0

Variance \mathcal{H}_1

[Y.S. Abou Mostafa, et. al]

Which is better?

[Y.S. Abou Mostafa, et. al]

Match the **model complexity**

to the data sources

not to the complexity of the target function.

Expected training and true error curves

Errors vary with the number of training samples

[Y.S. Abou Mostafa, et. al]

Regularization

Regularization: bias and variance

[Y.S. Abou Mostafa, et. al]

Winner of \mathcal{H}_0 , \mathcal{H}_1 , and \mathcal{H}_1 with regularization

[Y.S. Abou Mostafa, et. al]

Þ

Learning curves of bias, variance, and noise

[Bishop]

Bias-variance decomposition: summary

- The noise term is unavoidable.
- The terms we are interested in are bias and variance.
- The approximation-generalization trade-off is seen in the bias-variance decomposition.

Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 1.1,1.3, 3.1, 3.2.
- Yaser S. Abu-Mostafa, Malik Maghdon-Ismail, and Hsuan Tien Lin, "Learning from Data", Chapter 2.3, 3.2, 3.4.