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Topics

 Beyond linear regression models

 Evaluation & model selection

 Regularization

 Probabilistic perspective for the regression problem
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Recall: Linear regression (squared loss)

 Linear regression functions

𝑓 ∶ ℝ → ℝ 𝑓(𝑥;𝒘) = 𝑤0 +𝑤1𝑥

𝑓 ∶ ℝd → ℝ 𝑓(𝒙;𝒘) = 𝑤0 + 𝑤1𝑥1+ . . . 𝑤𝑑𝑥𝑑

 Minimizing the squared loss for linear regression

𝐽(𝒘) = 𝒚 − 𝑿𝒘 2
2

 We obtain  𝒘 = 𝑿𝑇𝑿 −𝟏 𝑿𝑇𝒚

3

𝒘 = 𝑤0,𝑤1,...,𝑤𝑑
𝑇 are the 

parameters we need to set.



Beyond linear regression

 How to extend the linear regression to non-linear

functions?

 Transform the data using basis functions

 Learn a linear regression on the new feature vectors (obtained

by basis functions)
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Beyond linear regression

 𝑚𝑡ℎ order polynomial regression (univariate 𝑓 ∶ ℝ ⟶ ℝ)

𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥+ . . . +𝑤𝑚−1𝑥
𝑚−1 +𝑤𝑚 𝑥

𝑚

 Solution: 𝒘= 𝑿′𝑇𝑿′
−𝟏
𝑿′𝑇𝒚

𝒚 =

𝑦1
⋮
𝑦𝑛

𝑿′ =

1 𝑥 1
1

𝑥 1
2
⋯ 𝑥 1

𝑚

1 𝑥 2
1

𝑥 2
2
⋯ 𝑥 2

𝑚

⋮
1

⋮

𝑥 𝑛
1

⋮

𝑥 𝑛
2
⋮
⋯

⋮

𝑥 𝑛
1

𝒘 =

 𝒘0
 𝒘1
⋮
 𝒘𝑚
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Polynomial regression: example
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𝑚 = 1
𝑚 = 3

𝑚 = 5 𝑚 = 7



Generalized linear

 Linear combination of fixed non-linear function of the

input vector

𝑓(𝒙;𝒘) = 𝑤0 + 𝑤1𝜙1(𝒙)+ . . . 𝑤𝑚𝜙𝑚(𝒙)

{𝜙1(𝒙), . . . , 𝜙𝑚(𝒙)}: set of basis functions (or features)

𝜙𝑖 𝒙 :ℝ
𝑑 → ℝ
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Basis functions: examples

 Linear

 Polynomial (univariate)
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Basis functions: examples

 Gaussian:𝜙𝑗 𝒙 = 𝑒𝑥𝑝 −
𝒙−𝒄𝑗

2

2𝜎𝑗
2

 Sigmoid:𝜙𝑗 𝒙 = 𝜎
𝒙−𝒄𝑗

𝜎𝑗
𝜎 𝑎 =

1

1+exp(−𝑎)
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Radial Basis Functions: prototypes 

 Predictions based on similarity to “prototypes”:

𝜙𝑗 𝒙 = 𝑒𝑥𝑝 −
1

2𝜎𝑗
2 𝒙 − 𝒄𝑗

2

 Measuring the similarity to the prototypes 𝒄1, … , 𝒄𝑚
 σ2 controls how quickly it vanishes as a function of the

distance to the prototype.

 Training examples themselves could serve as prototypes
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Generalized linear: optimization
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𝐽 𝒘 = 
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙 𝑖 ; 𝒘
2

= 
𝑖=1

𝑛

𝑦 𝑖 −𝒘𝑇𝝓 𝒙 𝑖
2

𝒚 =
𝑦(1)

⋮
𝑦(𝑛)

𝚽 =

1 𝜙1(𝒙
(1)
) ⋯ 𝜙𝑚(𝒙

(1)
)

1
⋮
𝜙1(𝒙

(2)
)

⋮

⋯
⋱
𝜙𝑚(𝒙

(2)
)

⋮

1 𝜙1(𝒙
(𝑛)
) ⋯ 𝜙𝑚(𝒙

(𝑛)
)

𝒘 =

𝑤0
𝑤1
⋮
𝑤𝑚

 𝒘= 𝚽𝑇𝚽
−𝟏
𝚽𝑇𝒚



Model complexity and overfitting

 With limited training data, models may achieve zero

training error but a large test error.

 Over-fitting: when the training loss no longer bears any

relation to the test (generalization) loss.

 Fails to generalize to unseen examples.
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1

𝑛
 
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝒙
𝑖
; 𝜽

2

≈ 0Training

(empirical) loss

Expected  

(test) loss
E𝐱,y 𝑦 − 𝑓 𝒙; 𝜽

2
≫ 0



Polynomial regression
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𝑚 = 0 𝑚 = 1

𝑚 = 3 𝑚 = 9

𝑦

𝑦

𝑦

𝑦

[Bishop]



Polynomial regression: training and test error
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𝑚

𝑅𝑀𝑆𝐸 =
 𝑖=1
𝑛 𝑦 𝑖 − 𝑓 𝒙

𝑖
; 𝜽

2

𝑛

[Bishop]



Over-fitting causes
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 Model complexity

 E.g., Model with a large number of parameters (degrees of

freedom)

 Low number of training data

 Small data size compared to the complexity of the model



Model complexity
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 Example:

 Polynomials with larger 𝑚 are becoming increasingly tuned to

the random noise on the target values.
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𝑚 = 0 𝑚 = 1

𝑚 = 3 𝑚 = 9

𝑦

𝑦

𝑦

𝑦

[Bishop]



Number of training data & overfitting
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 Over-fitting problem becomes less severe as the size of

training data increases.

𝑚 = 9 𝑚 = 9

𝑛 = 15 𝑛 = 100

[Bishop]



How to evaluate the learner’s performance?
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 Generalization error: true (or expected) error that we

would like to optimize

 Two ways to assess the generalization error is:

 Practical: Use a separate data set to test the model

 Theoretical: Law of Large numbers

 statistical bounds on the difference between training and expected

errors



Evaluation and model selection
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 Evaluation:

 We need to measure how well the learned function can

predicts the target for unseen examples

 Model selection:

 Most of the time we need to select among a set of models

 Example: polynomials with different degree 𝑚

 and thus we need to evaluate these models first



Avoiding over-fitting 
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 Determine a suitable value for model complexity

 Simple hold-out method

 Cross-validation

 Regularization (Occam’s Razor)

 Explicit preference towards simple models

 Penalize for the model complexity in the objective function

 Bayesian approach



Simple hold-out: model selection
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 Steps:

 Divide training data into training and validation set 𝑣_𝑠𝑒𝑡

 Use only the training set to train a set of models

 Evaluate each learned model on the validation set

 𝐽𝑣 𝒘 =
1

𝑣_𝑠𝑒𝑡
 𝑖∈𝑣_𝑠𝑒𝑡 𝑦

(𝑖)
− 𝑓 𝒙

(𝑖)
; 𝒘

2

 Choose the best model based on the validation set error

 Usually, too wasteful of valuable training data

 Training data may be limited.

 On the other hand, small validation set give a relatively noisy

estimate of performance.



Simple hold out:

training, validation, and test sets
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 Simple hold-out chooses the model that minimizes error on

validation set.

 𝐽𝑣  𝒘 is likely to be an optimistic estimate of generalization

error.

 extra parameter (e.g., degree of polynomial) is fit to this set.

 Estimate generalization error for the test set

 performance of the selected model is finally evaluated on the test set

Training

Validation

Test



Cross-Validation (CV): Evaluation
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 𝑘-fold cross-validation steps:

 Shuffle the dataset and randomly partition training data into 𝑘 groups of

approximately equal size

 for 𝑖 = 1 to 𝑘

 Choose the 𝑖-th group as the held-out validation group

 Train the model on all but the 𝑖-th group of data

 Evaluate the model on the held-out group

 Performance scores of the model from 𝑘 runs are averaged.

 The average error rate can be considered as an estimation of the true

performance.

…

…

…

…

…

First run

Second run

(k-1)th run

k-th run



Cross-Validation (CV): Model Selection
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 For each model we first find the average error find by CV.

 The model with the best average performance is

selected.



Cross-validation: polynomial regression example

 5-fold CV

 100 runs

 average
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𝑚 = 1
CV: 𝑀𝑆𝐸 = 0.30

𝑚 = 3
CV: 𝑀𝑆𝐸 = 1.45

𝑚 = 5
CV: 𝑀𝑆𝐸 = 45.44

𝑚 = 7
CV: 𝑀𝑆𝐸 = 31759



Leave-One-Out Cross Validation (LOOCV)
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 When data is particularly scarce, cross-validation with 𝑘
= 𝑁

 Leave-one-out treats each training sample in turn as a test

example and all other samples as the training set.

 Use for small datasets

 When training data is valuable

 LOOCV can be time expensive as 𝑁 training steps are

required.



Regularization
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 Adding a penalty term in the cost function to discourage

the coefficients from reaching large values.

 Ridge regression (weight decay):

𝐽 𝒘 = 
𝑖=1

𝑛

𝑦 𝑖 −𝒘𝑇𝝓 𝒙 𝑖
2
+ 𝜆𝒘𝑇𝒘

 𝒘= 𝚽𝑇𝚽+ 𝜆𝑰
−𝟏
𝚽𝑇𝒚



Polynomial order
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 Polynomials with larger 𝑚 are becoming increasingly

tuned to the random noise on the target values.

 magnitude of the coefficients typically gets larger by increasing

𝑚.

[Bishop]



Regularization parameter
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 𝑤1
 𝑤2
 𝑤3
 𝑤4
 𝑤5
 𝑤6
 𝑤7
 𝑤8
 𝑤9

𝑚 = 9

 𝑤0

𝑙𝑛𝜆 = −∞ 𝑙𝑛𝜆 = −18

[Bishop]



Regularization parameter
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 Generalization

 𝜆 now controls the effective complexity of the model and

hence determines the degree of over-fitting

[Bishop]



Choosing the regularization parameter 
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 A set of models with different values of 𝜆.

 Find  𝒘 for each model based on training data

 Find 𝐽𝑣( 𝒘) (or 𝐽𝑐𝑣( 𝒘)) for each model

 𝐽𝑣 𝒘 =
1

𝑛_𝑣
 𝑖∈𝑣_𝑠𝑒𝑡 𝑦

(𝑖)
− 𝑓 𝑥

(𝑖)
;𝒘

2

 Select the model with the best 𝐽𝑣( 𝒘) (or 𝐽𝑐𝑣( 𝒘))



The approximation-generailization trade-off
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 Small true error shows good approximation of 𝑓 out of

sample

 More complexℋ ⇒ better chance of approximating 𝑓

 Less complexℋ ⇒ better chance of generalization out of 𝑓



Complexity of Hypothesis Space: Example 
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P
ri

ce

Size

P
ri

ce

Size

P
ri

ce

Size

𝑤0 + 𝑤1𝑥 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥

2 + 𝑤3𝑥
3 + 𝑤4𝑥

4

This example has been adapted from: Prof.  Andrew Ng’s slides

More complex ℋLess complex ℋ



Complexity of Hypothesis Space: Example 
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P
ri

ce

Size

P
ri

ce

Size

P
ri

ce

Size

𝑤0 + 𝑤1𝑥 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥

2 + 𝑤3𝑥
3 + 𝑤4𝑥

4

This example has been adapted from: Prof.  Andrew Ng’s slides

More complex ℋLess complex ℋ



Complexity of Hypothesis Space: Example 
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degree of polynomial 𝑚

e
rr

o
r 𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

𝐽𝑣 𝒘 =
1

𝑛_𝑣
 
𝑖∈𝑣𝑎𝑙_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝒙

(𝑖)
; 𝒘

2

𝐽𝑡𝑟𝑎𝑖𝑛 𝒘 =
1

𝑛_𝑡𝑟𝑎𝑖𝑛
 
𝑖∈𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝒙

(𝑖)
; 𝒘

2



Complexity of Hypothesis Space
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 Less complexℋ:

 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) ≈ 𝐽𝑣( 𝒘) and 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) is very high

 More complexℋ:

 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) ≪ 𝐽𝑣( 𝒘) and 𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘) is low

degree of polynomial 𝑚

e
rr

o
r

𝐽𝑣( 𝒘)

𝐽𝑡𝑟𝑎𝑖𝑛( 𝒘)



Size of training set
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𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥
2

(training set size)

e
rr

o
r

𝑛

𝐽𝑣 𝒘 =
1

𝑛_𝑣
 
𝑖∈𝑣𝑎𝑙_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝑥

(𝑖)
; 𝒘

2

𝐽𝑡𝑟𝑎𝑖𝑛 𝒘 =
1

𝑛_𝑡𝑟𝑎𝑖𝑛
 
𝑖∈𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡

𝑦
(𝑖)
− 𝑓 𝑥

(𝑖)
; 𝒘

2

𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

This slide has been adapted from: Prof. Andrew Ng’s slides



Less complex ℋ
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size

p
ri

ce

size

p
ri

ce

𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥

If model is very simple, getting more

training data will not (by itself) help

much.

(training set size)

𝑛

e
rr

o
r

𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

High 

error

This slide has been adapted from: Prof. Andrew Ng’s slides



More complex ℋ

39

(training set size)

e
rr

o
r

𝑛

𝐽𝑣

𝐽𝑡𝑟𝑎𝑖𝑛

Gap

size

p
ri

ce

size

p
ri

ce

For more complex models, getting more 

training data is usually helps.

𝑓 𝑥;𝒘 = 𝑤0 + 𝑤1𝑥 + ⋯𝑤10𝑥
10

This slide has been adapted from: Prof. Andrew Ng’s slides



Regularization: Example
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𝑓 𝑥;𝒘 = 𝑤0 +𝑤1𝑥 + 𝑤2𝑥
2 +𝑤3 𝑥

3 +𝑤4 𝑥
4

𝐽 𝒘 =
1

𝑛
 
𝑖=1

𝑛

𝑦 𝑖 − 𝑓 𝑥 𝑖 ; 𝒘
2
+ 𝜆𝒘𝑇𝒘

Large 𝜆x
(Prefer to more simple models)

Intermediate 𝜆

P
ri

ce

Size

P
ri

ce

Size

P
ri

ce

Size

Small 𝜆
(Prefer to more complex models)

𝑤1 = 𝑤2 ≈ 0 𝜆 = 0

This example has been adapted from: Prof.  Andrew Ng’s slides



Model complexity: Bias-variance trade-off
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 Least squares, can lead to severe over-fitting if complex models

are trained using data sets of limited size.

 A frequentist viewpoint of the model complexity issue, known

as the bias-variance trade-off.



Formal discussion on bias, variance, and noise

42

 Best unrestricted regression function

 Noise

 Bias and variance



The learning diagram: deterministic target
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ℎ:𝒳 → 𝒴

𝑓:𝒳 → 𝒴

𝑥 1 , 𝑦(1) , … , 𝑥 𝑁 , 𝑦(𝑁)

𝑥 1 , … , 𝑥 𝑁

[Y.S. Abou Mostafa, et. al]



The learning diagram including noisy target
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 Type equation here.

ℎ:𝒳 → 𝒴

𝑓:𝒳 → 𝒴

𝑥 1 , 𝑦(1) , … , 𝑥 𝑁 , 𝑦(𝑁)

𝑥 1 , … , 𝑥 𝑁

𝑓 𝒙 = ℎ(𝒙)

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃(𝑦|𝑥)

Target 

distribution

Distribution 

on features

[Y.S. Abou Mostafa, et. al]



Best unrestricted regression function

 If we know the joint distribution 𝑃(𝒙, 𝑦) and no

constraints on the regression function?

 cost function: mean squared error

ℎ∗ = argmin
ℎ:ℝ𝑑→ℝ

𝔼𝒙,𝑦 𝑦 − ℎ 𝒙
2

ℎ∗ 𝒙 = 𝔼𝑦|𝒙[𝑦]

45



Best unrestricted regression function: Proof

𝔼𝒙,𝑦 𝑦 − ℎ 𝒙
2
= 𝑦 − ℎ 𝒙

2
𝑝 𝒙, 𝑦 𝑑𝒙𝑑𝑦

 For each 𝒙 separately minimize loss since ℎ(𝒙) can be chosen
independently for each different 𝒙:

𝛿𝔼𝒙,𝑦 𝑦 − ℎ 𝒙
2

𝛿ℎ(𝒙)
=  2 𝑦 − ℎ 𝒙 𝑝 𝒙, 𝑦 𝑑𝑦 = 0

⇒ ℎ 𝒙 =
 𝑦𝑝 𝒙, 𝑦 𝑑𝑦

 𝑝 𝒙, 𝑦 𝑑𝑦
=
 𝑦𝑝 𝒙, 𝑦 𝑑𝑦

𝑝 𝒙
=  𝑦𝑝 𝑦|𝒙 𝑑𝑦 = 𝔼𝑦|𝒙 𝑦

⟹ ℎ∗ 𝒙 = 𝔼𝑦|𝒙[𝑦]

46



Error decomposition

47

𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙 = 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − 𝑦 2

= 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 2

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2
+ 𝔼𝒙,𝑦 ℎ 𝒙 − 𝒚

2

+2𝔼𝒙,𝑦 𝑓𝒟 𝒙 − ℎ 𝒙 ℎ 𝒙 − 𝑦

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙 𝔼𝑦|𝒙 ℎ 𝒙 − 𝑦

0

Expected loss



Error decomposition

48

𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙 = 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − 𝑦 2

= 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − ℎ 𝒙 + ℎ 𝒙 − 𝑦 2

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2
+ 𝔼𝒙,𝑦 ℎ 𝒙 − 𝒚

2

+2𝐸𝒙,𝑦 𝑓 𝒙;  𝒘 − ℎ 𝒙 ℎ 𝒙 − 𝑦

 Noise shows the irreducible minimum value of the loss 

function

0

ℎ 𝒙 : minimizes the expected loss

𝒙, 𝑦 ~𝑃

noise



Expectation of true error
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𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙 = 𝔼𝒙,𝑦 𝑓𝒟 𝒙 − 𝑦 2

= 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2
+ 𝑛𝑜𝑖𝑠𝑒

𝔼𝒟 𝔼𝒙 𝑓𝒟 𝒙 − ℎ 𝒙
2

= 𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2

We now want to focus on 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2

.



The average hypothesis

50

 𝑓 𝒙 ≡ 𝐸𝒟 𝑓𝒟 𝒙

 𝑓 𝒙 ≈
1

𝐾
 

𝑘=1

𝐾

𝑓𝒟 𝑘 𝒙

𝐾 training sets (of size 𝑁) sampled from 𝑃(𝒙, 𝑦): 

𝒟(1), 𝒟(2), … , 𝒟(𝐾)



Using the average hypothesis

51

𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2

= 𝔼𝒟 𝑓𝒟 𝒙 −  𝑓 𝒙 +  𝑓 𝒙 − ℎ 𝒙
2

= 𝔼𝒟  𝑓𝒟 𝒙 −  𝑓 𝒙
2
+  𝑓 𝒙 − ℎ 𝒙
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Bias and variance
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𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2
= 𝔼𝒟 𝑓𝒟 𝒙 −  𝑓 𝒙

2
+  𝑓 𝒙 − ℎ 𝒙

2

𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 − ℎ 𝒙
2
= 𝔼𝒙 var 𝒙 + bias(𝒙)

= var + bias

var(𝒙) bias(𝒙)



Bias-variance trade-off
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var = 𝔼𝒙 𝔼𝒟 𝑓𝒟 𝒙 −  𝑓 𝒙
2

bias = 𝔼𝒙  𝑓 𝒙 − ℎ 𝒙

More complex ℋ ⇒ lower bias but higher variance 

ℎ

ℎ

[Y.S. Abou Mostafa, et. al]



Example: sin target

54

 Only two training example 𝑁 = 2

 Two models used for learning:

 ℋ0: 𝑓 𝑥 = 𝑏

 ℋ1: 𝑓 𝑥 = 𝑎𝑥 + 𝑏

 Which is betterℋ0 orℋ1?



Learning from a training set
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ℋ0 ℋ1

[Y.S. Abou Mostafa, et. al]



Variance ℋ0
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 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Variance ℋ1
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 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Which is better?
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 𝑓(𝑥)
 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Lesson
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Match themodel complexity

to the data sources

not to the complexity of the target function.



Expected training and true error curves
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 Errors vary with the number of training samples

𝐸train

𝐸train

𝐸true 𝐸true

expected true error: 𝔼𝒟 𝐸𝑡𝑟𝑢𝑒 𝑓𝒟 𝒙

expected training error: 𝔼𝒟 𝐸𝑡𝑟𝑎𝑖𝑛 𝑓𝒟 𝒙

[Y.S. Abou Mostafa, et. al]



Regularization

61 [Y.S. Abou Mostafa, et. al]



Regularization: bias and variance 
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 𝑓(𝑥) 𝑓(𝑥)

[Y.S. Abou Mostafa, et. al]



Winner of ℋ0, ℋ1, and ℋ1 with regularization  
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[Y.S. Abou Mostafa, et. al]

 𝑓(𝑥)

 𝑓(𝑥)

ℋ1

 𝑓(𝑥)



Regularization and bias/variance
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𝐿 = 100 data sets

𝑛 = 25
𝑚 = 25

𝜆 is 

large

𝜆 is 

intermediate

𝜆 is 

small

[Bishop]



Learning curves of bias, variance, and noise
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[Bishop]



Bias-variance decomposition: summary
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 The noise term is unavoidable.

 The terms we are interested in are bias and variance.

 The approximation-generalization trade-off is seen in the

bias-variance decomposition.
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