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Topics

» Beyond linear regression models
» Evaluation & model selection

» Regularization

» Probabilistic perspective for the regression problem



Recall: Linear regression (squared loss)

» Linear regression functions
f:R->R fl;w) = wy +wix
FiRIS R flx;w) =wy+wixg +...wyxy

W = [wg,Wy,..Wq]! are the
parameters we need to set.

» Minimizing the squared loss for linear regression

Jw) = lly — Xwll3
» We obtainw = (XTX)™1 XTy



Beyond linear regression

» How to extend the linear regression to non-linear
functions!?
Transform the data using basis functions

Learn a linear regression on the new feature vectors (obtained
by basis functions)



Beyond linear regression

» mt" order polynomial regression (univariate f : R — R)
m

fOow) =wy+wix+...+w,_x™ 4w, x

» Solution: W = (X’TX’)_1 XTy
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Polynomial regression: example
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Generalized linear

» Linear combination of fixed non-linear function of the
input vector

fow) =wy+wid(X)+ ... Wy (X)

{d1(x),..., D (x)}: set of basis functions (or features)

d;(x):R%* > R



Basis functions: examples

» Linear

It m=d, ¢0;(x) =x;,7=1,....d, then

f(x;w) = wo + wixrs + ... + wexy

» Polynomial (univariate)

If o;(x) =2, i=1,....m, then

f(nl W) = Wo +WIT + ... + Wyp_1T — + WyT



Basis functions: examples
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Radial Basis Functions: prototypes

» Predictions based on similarity to “prototypes’”:

1 2
0,0 = em |- pzlle- o
]

» Measuring the similarity to the prototypes ¢4, ..., ¢,

6% controls how quickly it vanishes as a function of the

distance to the prototype.
Training examples themselves could serve as prototypes
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Generalized linear: optimization
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Model complexity and overfitting

» With limited training data, models may achieve zero
training error but a large test error.

1 1 _ , 2
Training gz ) (y(l) —f (x(l); 0)) ~ 0
1=

(empirical) loss

ot h o)) o

» Overfitting: when the training loss no longer bears any
relation to the test (generalization) loss.

Fails to generalize to unseen examples.
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Polynomial regression

13 [Bishop]



Polynomial regression: training and test error

—©— Training
—©— Test

RMSE =
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Over-fitting causes

» Model complexity

E.g., Model with a large number of parameters (degrees of
freedom)

» Low number of training data

Small data size compared to the complexity of the model
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Model complexity

» Example:

Polynomials with larger m are becoming increasingly tuned to
the random noise on the target values.
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Number of training data & overfitting

» Over-fitting problem becomes less severe as the size of
training data increases.

[Bishop]
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How to evaluate the learner’s performance?

» Generalization error: true (or expected) error that we
would like to optimize

» Two ways to assess the generalization error is:
Practical: Use a separate data set to test the model
Theoretical: Law of Large numbers

statistical bounds on the difference between training and expected
errors
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Evaluation and model selection

» Evaluation:

We need to measure how well the learned function can
predicts the target for unseen examples

» Model selection:

Most of the time we need to select among a set of models

Example: polynomials with different degree m

and thus we need to evaluate these models first
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Avoiding over-fitting

» Determine a suitable value for model complexity
Simple hold-out method
Cross-validation

» Regularization (Occam’s Razor)
Explicit preference towards simple models

Penalize for the model complexity in the objective function

» Bayesian approach

20



Simple hold-out: model selection

» Steps:
Divide training data into training and validation set v_set

Use only the training set to train a set of models

Evaluate each learned model on the validation set

Jo(w) = - ZiEv_set (y(i) —f (x(i); W)>2

|v_set]|

Choose the best model based on the validation set error

» Usually, too wasteful of valuable training data
Training data may be limited.

On the other hand, small validation set give a relatively noisy
estimate of performance.
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Simple hold out:
training, validation, and test sets

» Simple hold-out chooses the model that minimizes error on
validation set.

» J,(w) is likely to be an optimistic estimate of generalization
error.

extra parameter (e.g., degree of polynomial) is fit to this set.

» Estimate generalization error for the test set

performance of the selected model is finally evaluated on the test set

Training

Validation

22
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Cross-Validation (CV): Evaluation

» k-fold cross-validation steps:
Shuffle the dataset and randomly partition training data into k groups of
approximately equal size
fori=1tok
Choose the i-th group as the held-out validation group
Train the model on all but the i-th group of data
Evaluate the model on the held-out group
Performance scores of the model from k runs are averaged.

The average error rate can be considered as an estimation of the true
performance.

First run

Second run

(k-1)th run

23 k-th run




Cross-Validation (CV): Model Selection

» For each model we first find the average error find by CV.

» The model with the best average performance is
selected.
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Cross-validation: polynomial regression example

) 5-fold CV -
» 100 runs .
average

25

m=1
CV: MSE = 0.30

m=25
CV: MSE = 45.44

m=3
CV: MSE = 1.45

CV: MSE = 31759




Leave-One-Out Cross Validation (LOOCV)

» When data is particularly scarce, cross-validation with k
=N
Leave-one-out treats each training sample in turn as a test
example and all other samples as the training set.

» Use for small datasets
When training data is valuable

LOOCV can be time expensive as N training steps are
required.
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Regularization

» Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.

» Ridge regression (weight decay):

J(w) = zn (y(i) — WTqb(x(i)))2 + w'w

=1

W= (D7D + ) ®Ty
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Polynomial order

» Polynomials with larger m are becoming increasingly
tuned to the random noise on the target values.

magnitude of the coefficients typically gets larger by increasing
m.

M=0 M=1 M=6 M=9
w:; | 019 082 03I 0.35
w] -1.27 7.99 232.37
w3 -25.43 -5321.83
w} 17.37 48568.31
w -231639.30
wi 640042.26
wg -1061800.52
w3 1042400.18
wg -557682.99
ws 125201.43

[Bishop]
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Regularization parameter

29

m=9

InA=-o InA=-18 InA=0
W 0.35 0.35 0.13
Wy 232.37 4.74 -0.05
Wy -5321.83 -0.77 -0.06
W3 48568.31 -31.97 -0.05
W, -231639.30 -3.89 -0.03
We 640042.26 55.28 -0.02
w, | -1061800.52 41.32 -0.01
s 1042400.18 -45.95 -0.00
W -557682.99 -91.53 0.00
v’|79. 125201.43 72.68 0.01

InA = —oo | Lt InA = —-18 |

[Bishop]



Regularization parameter

» Generalization

A now controls the effective complexity of the model and
hence determines the degree of overfitting

Training
Test
n
Z 05 ]
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In A
[Bishop]
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Choosing the regularization parameter

» A set of models with different values of A.

» Find W for each model based on training data

» Find J,,(Ww) (or J.,(W)) for each model

]v(W) — nL_inev_set (y(i) - f (x(i); W))Z

» Select the model with the best J,,(W) (or J.,(W))
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The approximation-generailization trade-off

» Small true error shows good approximation of f out of
sample

» More complex H = better chance of approximating f

» Less complex H{' = better chance of generalization out of f
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Complexity of Hypothesis Space: Example
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Less complex H

33 This example has been adapted from:
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Size

Wo + wix + wox? + wax3 + wyx?

More complex H

Prof. Andrew Ng’s slides



Complexity of Hypothesis Space: Example
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Less complex H More complex H

34 This example has been adapted from: Prof. Andrew Ng’s slides



Complexity of Hypothesis Space: Example

Price
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Complexity of Hypothesis Space

» Less complex H:
]train(w) ~ ]v(w) and ]train(w) is very high

» More complex H:
Jerain(W) KL J,(W) and Jirqin (W) is low

N ]U (W)

error

] train (W)

~

7

degree of polynomial m
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Size of training set

Jy(W) = — T

n_v ieval_set
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37 This slide has been adapted from: Prof. Andrew Ng’s slides
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Less complex H
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flgw) =wg + wyx + - wyox1©

More complex H

N
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For more complex models, getting more »
training data is usually helps.

size
39 This slide has been adapted from: Prof. Andrew Ng’s slides



Regularization: Example

flw) =wy +wix + wyx? +wsg x3 +w, x*

Jw) = . (Zil (y(i) — f(x9; w))2 + )LwTW>

n
X
X
X
(] ] (O]
I~ 2 v
LS. LS. LS.
a o o
X X
% N
Size Size Size
Large A Intermediate A Small A
(Prefer to more simple models) (Prefer to more complex models)
wy=w, =0 A=0

40 This example has been adapted from: Prof. Andrew Ng’s slides



Model complexity: Bias-variance trade-off

» Least squares, can lead to severe overfitting if complex models
are trained using data sets of limited size.

» A frequentist viewpoint of the model complexity issue, known
as the bias-variance trade-off.
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Formal discussion on bias, variance, and noise

» Best unrestricted regression function
» Noise

» Bias and variance

42



The learning diagram: deterministic target

UNKNOWN TARGET FUNCTION PROBABILITY
DISTRIBUTION
h: X -
P on ..,)i

=x®, ., x™

TRAINING EXAMPLES
(x®,y®), .., (x®, ™)

FINAL
HYPOTHESIS

fiX >y

HYPOTHESIS SET
H

43 [Y.S.Abou Mostafa, et. al]



The learning diagram including noisy target

» Type

44

UNKNOWN TARGET DISTRIBUTION

Ply | X)

target function h: X — Y plus noise

TRAINING EXAMPLES
(x®,y M), .., (x®, y)

=/ LEARNING

HYPOTHESIS SET
H

PROBABILITY
DISTRIBUTION

= x@, . xM -

P on X

X

f(x) = h(x)

— HYPOTHESIS

FINAL

fiX-19

P(x,y) = P(x)P(y|x)
W

[Y.S.Abou Mostafa, et. al]
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Best unrestricted regression function

» If we know the joint distribution P(x,y) and no
constraints on the regression function!?

cost function: mean squared error

h* = argmin E, ,, [(y — h(x))2]
h:RA>R

h*(x) = [Ey|x[Y]
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Best unrestricted regression function: Proof

By [(v = )] = [| (v = hG0)*p(x, y)dxay

» For each x separately minimize loss since h(x) can be chosen
independently for each different x:

SIEx, (y — h(x))z
: [5h(x) | - j 2(y — h(®))p(x,y)dy = 0

Jyp(x,y)dy [ yp(x,y)dy

= hix) = [p(x,v)dy  pX)

- f w10y = Ey e [y]

= h*(x) = Ey«[y]
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(x,y)~P
:EI’I’OI’ dGCOmpOSition h(x) : minimizes the expected loss

Etrue (fl) (x )) — Ex,y[(fl) (x) — Y)z] Expected loss

= E,, [(fo(x) — h(x) + h(x) — y)?]

= Ex (o (®) = h(®)"| + Exy [(h(x) - »)?]
+2Ey | (£ () = h(@) (k) = »)]
Y
E.|(fo(x) - h(3)) By el (h(x) - y)}]
Y
0
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(x,y)~P
:EI‘I’OI’ d@COmpOSition h(x) : minimizes the expected loss

Etrue(fl)(x )) — IEx,y[(fD(x) — Y)Z]

= E,, [(fp(x) — h(x) + h(x) — y)?]

= E, |(fo(x) — h(x))"| + Exy () = 9]
+0 e

noise

» Noise shows the irreducible minimum value of the loss
function

48



Expectation of true error

Etrue(fD(x )) — IEx,y[(fD(x) — y)z]
=[E, [(fD(x) — h(x))2] + noise

B, [E. (500>~ ho)|
~ E, [IE@ (fo(x) - h(x))zu

We now want to focus on [E; [(fD (x) — h(x))zl.
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The average hypothesis

f(x) = Eplfp(x)]

K
_ 1
Fo) == frw®)
k=1

K training sets (of size N) sampled from P(x, y):
DD p@ . DK
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Using the average hypothesis

Ep |(fo(x) = h())’|
=B |(fo00) = 760 + 760 = h() |

=E, (fD(x) — f(x ))2 + (f(x) — h(x))z
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Bias and variance

B (£ 00) = h0)*| = B |(fo) = o)) |+ (Fa) - h))
\ Va;(/x) o bias(x)

E, [IED [(fD(x) — h(x))zu = [E,[var(x) + bias(x) ]

= var + bias
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Bias-variance trade-off

var = E [usp (fo@) - f(x>)2”

bias = E,[f(x) — h(x)]

RN BT
— f__f--f"*. h !ﬁf :. C.c 0 o o2°
H " 4T bias AN A ,.,*'l *
) To et o m

More complex H = lower bias but higher variance

53 [Y.S.Abou Mostafa, et. al]



Example: sin target

» Only two training example N = 2

» Two models used for learning: U
Ho:f(x) =Db
Hi:f(x) =ax+b

» Which is better H; or H;?

o4



Learning from a training set

j'[o ‘7-[1

1 1 1 1 1 1 1 1 1
2T s 06 0 w2z 0 02 w1 s s 4 08 06 -04 02 0 02 04 06 08 1

55 [Y.S.Abou Mostafa, et. al]



Variance H

sin(x)

56 [Y.S.Abou Mostafa, et. al]



Variance H;

> f(x)

sin(z)

S7 [Y.S.Abou Mostafa, et. al]



Which is better?

Ho H,i

N

~ \_/ f(x)
sin(x) sin(z)
75 €T
bias = 0.50 var = 0.25 bias = 0.21 var = 1.69

58 [Y.S.Abou Mostafa, et. al]



LLesson

Match the model complexity
to the data sources

not to the complexity of the target function.
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Expected training and true error curves

» Errors vary with the number of training samples

Expected Error

7 S
\ true £ Eirue

= Etraln E
O
O
%
L]

/ Etrain

Number of Data Points, N Number of Data Points, N
Simple Model Complex Model

expected true error: Ep|Egue(fp(x))]
expected training error: Ep|Erqin(fo(x))]

60 [Y.S.Abou Mostafa, et. al]



Regularization

X

XL

with regularization

without regularization

[Y.S.Abou Mostafa, et. al]
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Regularization: bias and variance

without regularization with regularization
_ Flp
~ . f(x)
sin(7x) sin(7x)
i X
bias = 0.21 var = 1.69 bias = 0.23 var = 0.33

62 [Y.S.Abou Mostafa, et. al]



Winner of H,, H;, and H; with regularization

Ho H H; with regularization
— F x |
sin(z) sin(z) sin(7mx)
T 4 b X
bias = 0.50 var = 0.25 bias = 0.21 var = 1.69 bias = 0.23 var=.0.33

[Y.S.Abou Mostafa, et. al]



Regularization and bias/variance

Ais 0
large
_1 L
t
Ais
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_1 3
t
Ais
small
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Learning curves of bias, variance, and noise

0.15
(bias)2
0.12¢ variance
(bias)2 + variance
0.09 test error /
0.06 t
0.03 o
0
-3 -2 -1 0 1 2
In A
[Bishop]
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Bias-variance decomposition: summary

» The noise term is unavoidable.
» The terms we are interested in are bias and variance.

» The approximation-generalization trade-off is seen in the
bias-variance decomposition.
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Resources

» C. Bishop, “Pattern Recognition and Machine Learning”,
Chapter I.1,1.3, 3.1, 3.2.

» Yaser S. Abu-Mostafa, Malik Maghdon-Ismail, and Hsuan
Tien Lin,“Learning from Data”, Chapter 2.3, 3.2, 3.4.

67



