Support Vector Machine (SVM)
and Kernel Methods

CE-717: Machine Learning
Sharif University of Technology
Fall 2016

Soleymani

Outline

» Margin concept

» Hard-Margin SVM

» Soft-Margin SVM

» Dual Problems of Hard-Margin SVM and Soft-Margin SVM
» Nonlinear SVM

Kernel trick

» Kernel methods

Margin

» Which line is better to select as the boundary to provide
more generalization capability!?

X7

Larger margin provides better
generalization to unseen data

» Margin for a hyperplane that separates samples of two
linearly separable classes is:

The smallest distance between the decision boundary and any of the
training samples

What is better linear separation

» Linearly separable data

» Which line is better?

» Why the bigger margin?

Maximum margin

» SVM finds the solution with maximum margin
Solution: a hyperplane that is farthest from all training samples
O
A % O
X, O X2
O O

Larger margin

» The hyperplane with the largest margin has equal distances to
the nearest sample of both classes

5

Finding w with large margin

» Two preliminaries:
Pull out w,
wis [wyq, ..., wy]

wlx + wo =0 We have no x

» Normalize w, w,

Let x(™ be the nearest point to the plane

Wl x™ + wy| =1

Distance between an x™ and the plane

distance =

(™

. w
distance X ——
lw||

€I

The optimization problem

2
max-——- From all the hyperplanes
wwo ||w|| that correctly classify data
s.t. min_ [wTx™ +w,| =1
n=1,..,.N

Notice: [wTx™ + w,| = y™ (wTx™ +)

min = ||w]|?
W,Wq 2

s. t. y(")(wa(") + WO) >1 n=1,..,N

Hard-margin SVM: Optimization problem

2

max —
wwo [|W||

s. t. ‘wa(”) +W0‘ >1,n=1,..,N

Margin: 2

lIwll

Hard-margin SVM: Optimization problem

2
max ——
wwo [[w]
s. t. (wa(") + WO) > 1 Vy(") =1

(wa(") + WO) < -1 ‘v’y(") = -1

WTx‘l‘WO:O

NN

Margin: 2

lIwll

10

Hard-margin SVM: Optimization problem

We can equivalently optimize:

1o
mmn—-—-w w
w,wg 2

s.t. y@WWwrax®W +we)>1 n=1,..,N

» It is a convex Quadratic Programming (QP) problem
There are computationally efficient packages to solve it.

It has a global minimum (if any).

11

Quadratic programming

1
min=x"Qx + c'x
X 2
s.t. Ax<Db

Ex=d

12

Dual formulation of the SVM

» We are going to introduce the dual SVM problem which
is equivalent to the original primal problem. The dual
problem:

is often easier
gives us further insights into the optimal hyperplane
enable us to exploit the kernel trick

13

Optimization: Lagrangian multipliers

p” = min f(x)
x
s.t. g;(x) <0 i=1,.
h; (X) =0 (= 1 Lagrangian multipliers

Llx o, 2) = £(x) + z g:(x) + Z@éh (x)

(00 any g;(x) > 0
max L(x,a,A) =< anyh;(x) #0

{aiz0},{4;} :
\ f(x) otherwise

p* = mxln {aernOaP& }L(x a,l)

14

Optimization: Dual problem

» In general, we have:

max min h(x,y) < minmax h(x,y)
X y y X

» Primal problem: p* = mxln{airznoaf{(li}ﬁ(x, a,)

» Dual problem: d* = max minL(x,a,A)
{;20},{1;} «x

Obtained by swapping the order of min and max

» When the original problem is convex (f and g are convex
functions and h is affine), we have strong duality d* = p”

15

Hard-margin SVM: Dual problem

min = ||w/||?
w,wg 2

s. t. y(i)(wa(i) + WO) >1i=1,..,N

» By incorporating the constraints through lagrangian multipliers,
we will have:

1 N
min max} {E lw||? + Z an(l — y(n)(WTx(") + Wo))}
n=1

wwy {a;,=0

» Dual problem (changing the order of min and max in the
above problem):

1 N
max min {E lw||? + z an(l — y(”)(wa("> + Wo))}
n=1

{an,=0} wwg

16

Hard-margin SVM: Dual problem

max_ min L(w,w,, a)
{a, 20} w,w

1 N
L(w,wy,) = > lw||? + E 1an(1 — y(") (wa(") + WO))
n=

V,L(w,wy, @) =0=>w—YN_ a,y™Wx(™ =0

> W = 211;,:1 any(n)x(n)

dL(W,wp,a)
aWO

=0= _gg ayy ™ 29

w, do not appear, instead, a “global” constraint
on a is created.

17

Substituting

N N
w = z o,y ™ x ™) z o,y =0
n=1 n=1

In the Largrangian

1 N
LW, wy,) = szW + E 1an(1 — y(") (wa(") + WO))
n=

18

Substituting

N N
w = z o,y ™ x ™) z o,y =0
n=1 n=1

In the Largrangian
1 N
LW, w,, x) = szW + z (= yWwTx™ + wp))
n=1

We get

19

Substituting

N N
W = z any(n)x(n) z any(n) —
n=1 n=1

In the Largrangian
1 N
cono = w3y @
n=1

We get

20

Substituting

N N
w = z o,y ™ x ™) z o,y =0
n=1 n=1

In the Largrangian

1 N
LW, wy,) = §WTW + 2 1an(— M (T x™))
n=

We get

N N
N
L(a) = Zn_lan %z z anamy(n)y(m)x(n) x(m)
n=1

Maximize w.r.t. & subject to @, > 0 forn = 1,...,N and 3N_, a,,y™ = 0

21

Hard-margin SVM: Dual problem

max <

(

\

N 1
anlan B E

N
n=1

N

m

AR OGOV RN GO
1

Subjectto XN_.a,,y™ =0

» It is a convex QP

22

a,=20n=1,..,N

\

Y

J

Solution

» Quadratic programming:

i . .
L [y®ymx 0T @y
minEaT : : a+ (-1«
a
OGN I OMOMOUN)
s.t.—a<0
y'a=0

23

Finding the hyperplane
» After finding a by QP, we find w:

N
W — z o,y ™ x @
n=1
» How to find wy!?

we discuss it after introducing support vectors

24

Karush-Kuhn-Tucker (KKT) conditions

» Necessary conditions for the solution [w*, wg, a"]:
T Ll(w,wy, o) |w*,w8,a* =0

0L(w,wq,x)
aWO

a, =20 n=1,..,N
y(n)(w*Tx(n) + WS) >1 n=1,.., N

a; (1 — y(")(w*Tx(") + WS)) =0 n=1,..,N

K —

|w*,w8,a

L(x,) = f(x) + Z @ g:(0) VeLxa)| =0
min f (x) xa
s.t. g;(x) ; 0i=1..m In general, the optimal x*, a”
satisfies KKT conditions:

a; >0 i=1,..,m
gl(x*)SO i=1,..,m
a;gi(x)=0 i=1,..,m

25

Karush-Kuhn-Tucker (KKT) conditions

Inactive
constraint

(@ =0)

Active
constraint

[wikipedia]

Hard-margin SVM: Support vectors

» Inactive constraint: y™ (wa(") + WO) > 1
= a,, = 0 and thus x™ is not a support vector.
» Active constraint: y(") (wa(") + WO) =1

= a,, can be greater than 0 and thus x() can be a support vector.

27

Hard-margin SVM: Support vectors

» Inactive constraint: y™ (wa(") + WO) > 1
= a,, = 0 and thus x™ is not a support vector.

» Active constraint: y(n) (wa(”) + WO) =1

a=20
X2
A sample with a,, = 0 can also
lie on one of the margin
hyperplanes
a=p

28

Hard-margin SVM: Support vectors
» SupportVectors (SVs)= {x™ |, > 0}

» The direction of hyper-plane can be found only based on
support vectors:

- 2 o, Y™

x>0
N
X2

29 X1

Finding the hyperplane
» After finding a by QP, we find w:

N
W — z o,y ™ x @
n=1
» How to find wy!?

Each of the samples that has . > 0 is on the margin, thus we
solve for w; using any of SVs:

(wTx(S) +w| =1
yO(wlx®) +wy) =1

= wy =y —wTx®

30

Hard-margin SVM: Dual problem
Classifying new samples using only SVs

» Classification of a new sample x:

$ = sign(w, +wTx)

T
y = sign| wy + (z any(")x(n)> x)
an>0
9 = sign(y®) — z o,y 46 4 z o,y ™™)
)\} / an>0
" Support vectors are sufficient to

Wo predict labels of new samples

» The classifier is based on the expansion in terms of dot
products of x with support vectors.

31

Hard-margin SVM: Dual problem

(N 1 N N)
max - z Ay, _EZ z anamy(”)y(m)x(")Tx(m) ,
\n=1 n=1m=1)

Subjectto XN_.a,y™ =0

a,=0n=1,.., N

» Only the dot product of each pair of training data appears in
the optimization problem
An important property that is helpful to extend to non-linear SVM

32

In the transformed space

N 1 N N
gl =135 iy ot
n=1 n=1

Subjectto YN_,a,y™ =0
a,=0n=1,..,N

1 - 1
xx o x B . .
x o . X
o
g" ¢() x X
0 ():5 (@) x %
o o >
(@) O *
b ¢ % % % O
_qlx % _ 1] =Ke)
—1 0 0 0.5

Beyond linear separability

» When training samples are not linearly separable, it has
no solution.

» How to extend it to find a solution even though the
classes are not exactly linearly separable.

34

Beyond linear separability

» How to extend the hard-margin SVM to allow
classification error

Overlapping classes that can be approximately separated by a
linear boundary

Noise in the linearly separable classes

35

Beyond linear separability: Soft-margin SVM

» Minimizing the number of misclassified points?!
NP-complete

» Soft margin:

Maximizing a margin while trying to minimize the distance
between misclassified points and their correct margin plane

36

Error measure

» Margin violation amount &, (¢,, = 0):
yW(wlx™ +wy) >1-¢,

» Total violation: Zi‘[ﬂ én

37

Soft-margin SVM: Optimization problem

» SVM with slack variables: allows samples to fall within the
margin, but penalizes them

1 N
: - 2 E
min > llw]|* + Cn_1 &n

w,Wwo,(§nln=1

S. t. y(")(wa(") + WO) >1-¢, n=1,..,N
$n 20

¢,,:slack variables

0 < &, < 1:if x(Mis correctly
classified but inside margin

&, > 1:if x™ is misclassifed

38

Soft-margin SVM

» linear penalty (hinge loss) for a sample if it is misclassified
or lied in the margin

tries to maintain ¢,, small while maximizing the margin.
always finds a solution (as opposed to hard-margin SVM)

more robust to the outliers

» Soft margin problem is still a convex QP

39

Soft-margin SVM: Parameter C

» C is a tradeoff parameter:

small C allows margin constraints to be easily ignored

large margin

large C makes constraints hard to ignore

narrow margin

» C — oo enforces all constraints: hard margin

» C can be determined using a technique like cross-
validation

40

Soft-margin SVM: Cost function

1 N
min - > lwl||? + C z &,
n=1

W»Wo»{fn}g=1

s. t. y(")(wa(") + WO) >1-¢, n=1,...,,N

» It is equivalent to the unconstrained optimization
problem:

N
1
min - [[w||* + C E max(0,1 —y™ W x™ +w))
W,Wq 2 1
n=

41

SVM loss function

» Hinge loss vs. 0-1 loss

max(0,1 — y(w"x+ wy))

O-1 Loss

Hinge Loss

WTx + Wo

42

Lagrange formulation
L(W: Wo, f) Qa, ﬁ)

1 N
=SlwlP+c) &,
n=1

N N
+ zn=1an(1 _ fn _ y(n) (WTx(n) + WO)) — Enzlﬁnfn

» Minimize w.r.t. w, w,, ¢ and maximize w.r.t. ,, = 0 and 3,
> 0] N
min ~lWl?+C) ¢
wwo{En}ie; 2 =
S. t. y(")(wa(") + WO) >1-¢, n=1,...,,N
=0

43

Lagrange formulation

1
Lw, wo, &, @, B) =5 IWll? + C Eny én + X an(1

44

Soft—margin SVM: Dual problem

N
max - 2 a,, —%Z 2 a amy(”)y(m)x(")Tx(m)
a

m=1 /
Subjectto YN_.a,y™ =0

\

Y

0<a,<Cn=1,.. N

» After solving the above quadratic problem, w is find as:

N
W = Z a,, y ™™
n=1

45

Soft-margin SVM: Support vectors

» SupportVectors: a,, > 0
If 0 < a,, < C (margin support vector) SVs on the margin

y™®(wlx™ +w,) =1 (én = 0)
If « = C (non-margin support vector) SVs on or over the margin

yW(wlx™W +wy) <1 (£, > 0)

_an ,Bn—o

46

SVM: Summary
» Hard margin: maximizing margin

» Soft margin: handling noisy data and overlapping classes

Slack variables in the problem

» Dual problems of hard-margin and soft-margin SVM

Classifier decision in terms of support vectors

» Dual problems lead us to non-linear SVM method easily by
kernel substitution

47

Not linearly separable data

» Noisy data or overlapping classes

(we discussed about it: soft margin)

» Near linearly separable

» Non-linear decision surface

» Transform to a new feature space

48

X7

/

7

Nonlinear SVM

» Assume a transformation ¢:R? - R™ on the feature

space o (x) = [p1(x),..., P, (x)]

X = ¢(X) {P1(%x),...¢0;, (x)}: set of basis functions (or features)
¢:(x):R* > R

» Find a hyper-plane in the transformed feature space:

1 O ¢ (x) 1
Xo OO O 8 O
X O ¢: x - Pp(x)
X X O —
5 X X O
x X ©
O
/ >

49

Soft-margin SVM in a transformed space:
Primal problem

» Primal problem:

mln— lw||? + C 2 &,

S. t. y(")(wT([)(x(")) + WO) 1 -¢&, n=1,...,,N
Sn 2

w € R™: the weights that must be found

If m > d (very high dimensional feature space) then there are
many more parameters to learn

50

Soft-margin SVM in a transformed space:
Dual problem

» Optimization problem°

N
max Z oty ——Z Z U Oy Wy ™ (xM) (™)
n=1

n=1m=

Subjectto Y N_, a,,y(™ =0

0<a,<Cn=1,.. N

» If we have inner products ¢(x(i))T¢(x(j)), only «
= |aq, ..., ay] needs to be learnt.

not necessary to learn m parameters as opposed to the primal problem

51

Classifying a new data

y = sign(wo + qub(x))
wherew =}, oy yM e (xW)

and wy, =y —wTp(x)

52

Kernel SVM

» Learns linear decision boundary in a high dimension space
without explicitly working on the mapped data

» Let p(x)Tp(x’') = K(x,x") (kernel)

» Example: x = [x;, x,] and second-order ¢:
_ 2 .2
¢(x) — [11 X1» x21x11x21x1x2]

K(x, x")
=1+ x1X] + XpX5 + X2x1% + x5x5% + XX X%

93

Kernel trick

» Compute K(x,x") without transforming x and x’

» Example: Consider K(x,x") = (1 + x"x")?
=(1+x1x7 + xzxé)z

=1+ 2xX] + 2x,%5 + xFx1% + X5x55 + 2%,X1 %%

This is an inner product in:

P(x) = [1 \/_xl,\/_xz,xl,xz,\/_xlxz]
d(x) = [1,V2x],V2x5, x'2, x'3,v2x1 x5

o4

Polynomial kernel: Degree two

» We instead use K(x,x") = (x"x’ + 1)? that corresponds to:

d-dimensional feature space x = [xy, ...,x4]"

¢(x)
T
= [1,V2xq, o, V24, %2, .., x2,V2x1 X5, e, V2124, V22523, oo, V2 g1 %4 |

95

Polynomial kernel

» This can similarly be generalized to d-dimensioan x and ¢s are
polynomials of order M:

Kx,x) =1+ x"x"M

M
= (1+x1x7 + x2%5 + -+ xqx,)

» Example: SVM boundary for a polynomial kernel
» wog +wigp(x) =0
= Wo + Xg;>0 “iy(i)qb(x(i))T(b(x) =0
= Wo + 250 a;yPk(xW,x) =0

. _ M .
= Wy + Zai>0 aiy(‘) (1 + x(t)Tx) =0 =) Boundar).l is a
polynomial of order M

o6

Why kernel?

» kernel functions K can indeed be efficiently computed, with a
cost proportional to d (the dimensionality of the input)
instead of m.

» Example: consider the second-order polynomial transform:

() = [1,%q, oo\ Xg, X2, X1 X, e, XgXg]T m=1+d+d?
1 d» 1y 4142 dtd

POTPR) =1+ i Wty Y xEy o

)" P(x) =1+ (x"x") + (x"x')? 0(d)

Y

Gaussian or RBF kernel

» If K(x,x") is an inner product in some transformed space of x,
it is good

|| x—x

» K(x,x') = exp(— ’” —)

» Take one dimensional case with y = 1:
K(x,x") = exp(—(x — x")?)

= exp(—x?) exp(—x'?) exp(2xx")

> 2K K o 1K
= exp(—x?) exp(—x'?) 2 T

58

Some common kernel functions

» Linear: k(x,x") = x'x’

» Polynomial: k(x,x') = (xTx’ + 1)M

» Gaussian: k(x,x') = exp(—

» Sigmoid: k(x,x’) = tanh(ax’x’ + b)

59

Kernel formulation of SVM

» Optimization problem'

(N
max < z Z Z A y(n)y(m) k(x(n) x(m))
a
KTL=1

n=1m= J

\

Subjectto YN_. a,y™ =0

0<a,<Cn=1,..,N

YOy DR (x®, xD) . yDyW(xW) x D)
Q= : . .

MNES K(xUV), *®) Y (M5, (W) K&x(’v), x ™)

60

Y

Classifying a new data

y = sign(wo + qub(x))
wherew =}, oy yM e (xW)
and wy, =y —wTp(x)

$ = sign (WO + 2 a, y™ k(x™, x))

an>0

WO = y(s) —_ z an y(n) k(x(n),x(s))

>0

61

Gaussian kernel

» Example: SVM boundary for a gaussian kernel
» Considers a Gaussian function around each data point.

%=

(D) x|
> Wo + Zgs0 2y exp(————) =0

SVM + Gaussian Kernel can classify any arbitrary training set

Training error is zero when g — (

All samples become support vectors (likely overfiting)

62

Hard margin |

o

exp(—1|x — x||*)

exp(—10||x — x'||?)

exp(—100||x — x'||?)

» For narrow Gaussian (large o), even the protection of a large

margin cannot suppress overfitting.

63

SVM Gaussian kernel: Example

64

feature y

112
0 |2 — x@]]
— 1 _
FEO =wo+) aiyDexp(——;
a;>0
06L X g E E I .
04} Xy
® . % Q w X
0.2k " ® - 5 o L
u L {_:1 o o b
* E‘_} L .;_'_:: .-:l
oo 9 ¢ o .
0F . O o0 "}ﬂ * oy
0
* » ») e
02l . ° o <.
_{]-4 | e ® . § % ® x k3)
_UE | | | | | | | | |
0.8 0.6 0.4 02 0 0z 0.4 0.6 0.8 1
feature x

This example has been adopted from Zisserman’s slides

)

SVM Gaussian kernel: Example

feature v

1.2

f(x) =~

-0.4

s L6 -0.4 0.2] 0.2 0.4 0h 0.8 1
feature x

» 65 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

feature v

= N6 0.4 0.2 0 0.2 0.4 (I5] 0.4 1
feature

oo This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

0B

0.4

=
[

feature vy

L]

0.2

0.4

feature x

b o/ This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

feature vy

» 68 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

Uk

0.4

=
[

feature y

L]

-
P

-0.4

-0.6
-0.8 0.6 -0.4 0.2 0 0.2 0.4 0k 0.8 1

feature x
> 69 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

0.6
0.4

0.2

feature ¥

0.2

-0.4

0B
-0.8 0.6 -0.4 0.2 0 0.2 0.4 0k 0.8 1

teature .
» o This example has been adopted from Zisserman’s slides

Kernel trick: Idea

» Kernel trick —» Extension of many well-known algorithms to
kernel-based ones

By substituting the dot product with the kernel function
k(x,x") = ¢p(x0)" P (x)

k(x,x") shows the dot product of x and x" in the transformed space.

» ldea: when the input vectors appears only in the form of dot
products, we can use kernel trick
Solving the problem without explicitly mapping the data

Explicit mapping is expensive if ¢p(x) is very high dimensional

71

Kernel trick: Idea (Cont’d)

» Instead of using a mapping ¢: X « F to represent x € X by
¢ (x) € F,a similarity function k: X’ X X — R is used.

We specify only an inner product function between points in the
transformed space (not their coordinates)

In many cases, the inner product in the embedding space can be
computed efficiently.

72

Constructing kernels

» Construct kernel functions directly

Ensure that it is a valid kernel

Corresponds to an inner product in some feature space.

» Example: k(x, x') = (xTx")?

T
Corresponding mapping: ¢ (x) = |x7,V2x1x,, x5 for x
=[x, x2]"

» We need a way to test whether a kernel is valid without
having to construct ¢p(x)

73

Valid kernel: Necessary & sufficient conditions

Shawe-Taylor & Cristianini 2004
» Gram matrix Kyyy: K;; = k(x®, x0)) [4]

Restricting the kernel functlon to a set of points {x(1), x(2) .. x(V)}

_k(x(l)’x(l)) k(x(l)’x(N))-

k™ D) e R(x®), 2@

» Mercer Theorem: The kernel matrix is Symmetric Positive
Semi-Definite (for any choice of data points)

Any symmetric positive definite matrix can be regarded as a kernel
matrix, that is as an inner product matrix in some space

74

Extending linear methods to kernelized ones

» Kernelized version of linear methods

Linear methods are famous

Unique optimal solutions, faster learning algorithms, and better analysis

However, we often require nonlinear methods in real-world problems
and so we can use kernel-based version of these linear algorithms

» Replacing inner products with kernels in linear algorithms =
very flexible methods

We can operate in the mapped space without ever computing the
coordinates of the data in that space

75

Example: kernelized minimum distance
classifier

» If |lx —]l < llx — || then assign x to C;

(x—p) (= py) < (= p)" (x = py)
—2xTpy +pipy < =2xTp, + php,

T T
2 Zy(")=1 xx™ + Z:y(n)=1 Z“y(m)=1 x < -2 ZYW:Z X" X + Zy(n)=2 Zy(m)=2 x()” x)

N, N, X N, N, N, X N,

5 Zy(n)=1 K(x' x(n)) n Zy(n)zl Zy(m)zl K(x(n); x(m)) < Zy(n)=2 K(x, x(”)) N Zy(n)zz Zy(m)zz K(x("), x(m))
N, N, X N, N, N, X N,

76

Which information can be obtained from kernel?

» Example: we know all pairwise distances

d(p(x), d(@)° = lp(x) — @2 = k(x, %) + k(z, 2) — 2k (x, 2)

Therefore, we also know distance of points from center of mass of a set

» Many dimensionality reduction, clustering, and classification
methods can be described according to pairwise distances.

This allow us to introduce kernelized versions of them

77

Example: Kernel ridge regression

N
min 2 (wTx(™ — y("))z + wTw
i
n=

N N
z 2xMW(wlx(W — W) 4 2w 5w = 2 ax™

n=1 n=1

1
a, = _I(WTx(n) — y(n))

78

Example: Kernel ridge regression (Cont’d)

N
min 2 (wTp(x™) — y("))z + AwTw
w
n=1

N
w= Z a,d(x™)

» Dual representation:
J(@) =a’®ddTdd"a — 20" ®PTy + yTy + la’ ddTa
J(@) =a’KKa — 2a"Ky + y'y + la" K«

V() =0=>a=(K+ Ay ly

79

Example: Kernel ridge regression (Cont’d)

» Prediction for new x:

fx) =w'g(x)

80

= a' PP(x)
T

K(xD, x)]

K™, x)

(K + AIy) ty

w=®&'q

Kernels for structured data

» Kernels also can be defined on general types of data

Kernel functions do not need to be defined over vectors

just we need a symmetric positive definite matrix

» Thus, many algorithms can work with general (non-vectorial)
data

Kernels exist to embed strings, trees, graphs, ...

» This may be more important than nonlinearity

kernel-based version of classical learning algorithms for recognition
of structured data

81

Kernel function for objects

» Sets: Example of kernel function for sets:

k(A,B) = 2AnB|

» Strings: The inner product of the feature vectors for two
strings can be defined as

e.g. sum over all common subsequences weighted according to
their frequency of occurrence and lengths

A|lEIG|IA|T|E|IA|G|G

E|I G| T|E|A|G|A|E|G|A|T]|G

82

Kernel trick advantages: summary

» Operating in the mapped space without ever computing the
coordinates of the data in that space

» Besides vectors, we can introduce kernel functions for
structured data (graphs, strings, etc.)

» Much of the geometry of the data in the embedding space is
contained in all pairwise dot products

» In many cases, inner product in the embedding space can be
computed efficiently.

83

Resources

» C. Bishop, “Pattern Recognition and Machine Learning”,
Chapter 6.1-6.2,7.1.

» Yaser S. Abu-Mostafa, et al., “Learning from Data”, Chapter
8.

84

