
CE-717: Machine Learning
Sharif University of Technology

Fall 2016

Soleymani

Support Vector Machine (SVM)

and Kernel Methods

Outline

 Margin concept

 Hard-Margin SVM

 Soft-Margin SVM

 Dual Problems of Hard-Margin SVM and Soft-Margin SVM

 Nonlinear SVM

 Kernel trick

 Kernel methods

2

Margin

3

 Which line is better to select as the boundary to provide
more generalization capability?

 Margin for a hyperplane that separates samples of two
linearly separable classes is:

 The smallest distance between the decision boundary and any of the
training samples

𝑥2

𝑥1

Larger margin provides better

generalization to unseen data

What is better linear separation

4

 Linearly separable data

 Which line is better?

 Why the bigger margin?

Maximum margin

5

 SVM finds the solution with maximum margin

 Solution: a hyperplane that is farthest from all training samples

 The hyperplane with the largest margin has equal distances to
the nearest sample of both classes

𝑥2

𝑥1

𝑥2

𝑥1 Larger margin

Finding 𝒘 with large margin

6

 Two preliminaries:

 Pull out 𝑤0

 𝒘 is 𝑤1, … , 𝑤𝑑

 Normalize 𝒘, 𝑤0

 Let 𝒙(𝑛) be the nearest point to the plane

 𝒘𝑇𝒙(𝑛) + 𝑤0 = 1

𝒘𝑇𝒙 + 𝑤0 = 0 We have no 𝑥0

Distance between an 𝒙(𝑛) and the plane

7

distance =
𝒘𝑇𝒙(𝑛) + 𝑤0

𝒘

𝒙(𝑛)

distance ×
𝒘

𝒘

The optimization problem

8

max
𝒘,𝑤0

2

𝒘

s. t. min
𝑛=1,…,𝑁

𝒘𝑇𝒙 𝑛 + 𝑤0 = 1

min
𝒘,𝑤0

1

2
𝒘 2

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 𝑛 = 1, … , 𝑁

Notice: 𝒘𝑇𝒙 𝑛 + 𝑤0 = 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0

From all the hyperplanes

that correctly classify data

Hard-margin SVM: Optimization problem

9

max
𝒘,𝑤0

2

𝒘

s. t. 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 , 𝑛 = 1, … , 𝑁

𝑥2

𝑥1

1

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 1
𝒘𝑇𝒙 + 𝑤0 = −1

𝒘

Margin:
2

𝒘

Hard-margin SVM: Optimization problem

10

max
𝒘,𝑤0

2

𝒘

s. t. 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 ∀𝑦 𝑛 = 1

𝒘𝑇𝒙 𝑛 + 𝑤0 ≤ −1 ∀𝑦 𝑛 = −1

𝑥2

𝑥1

1

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 1
𝒘𝑇𝒙 + 𝑤0 = −1

𝒘

Margin:
2

𝒘

Hard-margin SVM: Optimization problem

11

We can equivalently optimize:

min
𝒘,𝑤0

1

2
𝒘𝑇𝒘

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 𝑛 = 1, … , 𝑁

 It is a convex Quadratic Programming (QP) problem

 There are computationally efficient packages to solve it.

 It has a global minimum (if any).

Quadratic programming

12

min
𝒙

1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃
𝑬𝒙 = 𝒅

Dual formulation of the SVM

13

 We are going to introduce the dual SVM problem which

is equivalent to the original primal problem. The dual

problem:

 is often easier

 gives us further insights into the optimal hyperplane

 enable us to exploit the kernel trick

Optimization: Lagrangian multipliers

14

𝑝∗ = min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1,… , 𝑚
ℎ𝑖 𝒙 = 0 𝑖 = 1, … , 𝑝

ℒ 𝒙, 𝜶, 𝝀 = 𝑓 𝒙 +

𝑖=1

𝑚

𝛼𝑖 𝑔𝑖 𝒙 +

𝑖=1

𝑝

𝜆𝑖 ℎ𝑖 𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀 =

∞ any 𝑔𝑖 𝒙 > 0

∞ any ℎ𝑖 𝒙 ≠ 0

𝑓 𝒙 otherwise

𝑝∗ = min
𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀

Lagrangian multipliers

𝜶 = 𝛼1, … , 𝛼𝑚

𝝀 = [𝜆1, … , 𝜆𝑝]

Optimization: Dual problem

15

 In general, we have:

max
𝑥

min
𝑦

ℎ(𝑥, 𝑦) ≤ min
𝑦

max
𝑥

ℎ(𝑥, 𝑦)

 Primal problem: 𝑝∗ = min
𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀

 Dual problem: 𝑑∗ = max
𝛼𝑖≥0 , 𝜆𝑖

min
𝒙

ℒ 𝒙, 𝜶, 𝝀

 Obtained by swapping the order of min and max

 𝑑∗ ≤ 𝑝∗

 When the original problem is convex (𝑓 and 𝑔 are convex

functions and ℎ is affine), we have strong duality 𝑑∗ = 𝑝∗

Hard-margin SVM: Dual problem

16

min
𝒘,𝑤0

1

2
𝒘 2

s. t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑤0 ≥ 1 𝑖 = 1, … , 𝑁

 By incorporating the constraints through lagrangian multipliers,
we will have:

min
𝒘,𝑤0

max
{𝛼𝑛≥0}

1

2
𝒘 2 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

 Dual problem (changing the order of min and max in the
above problem):

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

1

2
𝒘 2 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

Hard-margin SVM: Dual problem

17

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

ℒ 𝒘,𝑤0, 𝜶

ℒ 𝒘,𝑤0, 𝜶 =
1

2
𝒘 2 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

 𝛻𝒘ℒ 𝒘,𝑤0, 𝜶 = 0 ⇒ 𝒘 − 𝑛=1
𝑁 𝛼𝑛𝑦 𝑛 𝒙 𝑛 = 𝟎

 ⇒ 𝒘 = 𝑛=1
𝑁 𝛼𝑛𝑦 𝑛 𝒙 𝑛



𝜕ℒ 𝒘,𝑤0,𝜶

𝜕𝑤𝟎
= 0 ⇒ − 𝑛=1

𝑁 𝛼𝑛𝑦(𝑛) = 0

𝑤0 do not appear, instead, a “global” constraint

on 𝜶 is created.

Substituting

18

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Substituting

19

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

We get

ℒ 𝒘,𝑤0, 𝜶 =
𝑛=1

𝑁

𝛼𝑛

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Substituting

20

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

We get

ℒ 𝒘,𝑤0, 𝜶 =
𝑛=1

𝑁

𝛼𝑛

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Substituting

21

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

We get

ℒ 𝜶 =
𝑛=1

𝑁

𝛼𝑛 −
1
2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Maximize w.r.t. 𝜶 subject to 𝛼𝑛 ≥ 0 for 𝑛 = 1, … ,𝑁 and 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

Hard-margin SVM: Dual problem

22

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 𝛼𝑛 ≥ 0 𝑛 = 1, … , 𝑁

 It is a convex QP

Solution

23

 Quadratic programming:

min
𝜶

1

2
𝜶𝑇

𝑦 1 𝑦 1 𝒙 1 𝑇
𝒙 1 ⋯ 𝑦 1 𝑦 𝑁 𝒙 1 𝑇

𝒙 𝑁

⋮ ⋱ ⋮

𝑦 𝑁 𝑦 1 𝒙 𝑁 𝑇
𝒙 1 ⋯ 𝑦 𝑁 𝑦 𝑁 𝒙 𝑁 𝑇

𝒙 𝑁

𝜶 + (−𝟏)𝑇𝜶

s. t. −𝜶 ≤ 𝟎
𝒚𝑇𝜶 = 𝟎

Finding the hyperplane

24

 After finding 𝜶 by QP, we find 𝒘:

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

 How to find 𝑤0?

 we discuss it after introducing support vectors

Karush-Kuhn-Tucker (KKT) conditions

25

 Necessary conditions for the solution [𝒘∗, 𝑤0
∗, 𝜶∗]:

 𝛻𝒘ℒ 𝒘, 𝑤0, 𝜶 𝒘∗,𝑤0
∗ ,𝜶∗ = 0



𝜕ℒ 𝒘,𝑤0,𝜶

𝜕𝑤0
 𝒘∗,𝑤0

∗ ,𝜶∗ = 0

 𝛼𝑛
∗ ≥ 0 𝑛 = 1, … , 𝑁

 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 + 𝑤0
∗ ≥ 1 𝑛 = 1, … , 𝑁

 𝛼𝑖
∗ 1 − 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 + 𝑤0

∗ = 0 𝑛 = 1, … , 𝑁

𝛻𝒙ℒ 𝒙, 𝜶
𝒙∗,𝜶∗

= 0

𝛼𝑖
∗ ≥ 0 𝑖 = 1, … , 𝑚

𝑔𝑖 𝒙∗ ≤ 0 𝑖 = 1, … , 𝑚
𝛼𝑖

∗𝑔𝑖 𝒙∗ = 0 𝑖 = 1, … , 𝑚

ℒ 𝒙, 𝜶 = 𝑓 𝒙 + 𝛼𝑖 𝑔𝑖 𝒙

In general, the optimal 𝒙∗, 𝜶∗

satisfies KKT conditions:

min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1, … , 𝑚

Karush-Kuhn-Tucker (KKT) conditions

26
[wikipedia]

Inactive

constraint

(𝛼 = 0)

Active

constraint

Hard-margin SVM: Support vectors

27

 Inactive constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 > 1

 ⇒ 𝛼𝑛 = 0 and thus 𝒙 𝑛 is not a support vector.

 Active constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 = 1

 ⇒ 𝛼𝑛 can be greater than 0 and thus 𝒙 𝑖 can be a support vector.

𝑥2

𝑥1

𝛼 > 0

𝛼 > 0
𝛼 > 0

Hard-margin SVM: Support vectors

28

 Inactive constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 > 1

 ⇒ 𝛼𝑛 = 0 and thus 𝒙 𝑛 is not a support vector.

 Active constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 = 1

𝑥2

𝑥1

𝛼 > 0

𝛼 > 0
𝛼 > 0

𝛼 = 0

𝛼 = 0

A sample with 𝛼𝑛 = 0 can also

lie on one of the margin

hyperplanes

Hard-margin SVM: Support vectors

29

 SupportVectors (SVs)= {𝒙 𝑛 𝛼𝑛 > 0}

 The direction of hyper-plane can be found only based on

support vectors:

𝒘 =

𝛼𝑛>0

𝛼𝑛 𝑦(𝑛)𝒙(𝑛)

𝑥2

𝑥1

Finding the hyperplane

30

 After finding 𝜶 by QP, we find 𝒘:

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

 How to find 𝑤0?

 Each of the samples that has 𝛼𝑠 > 0 is on the margin, thus we

solve for 𝑤0 using any of SVs:

𝒘𝑇𝒙 𝑠 + 𝑤0 = 1

𝑦 𝑠 𝒘𝑇𝒙 𝑠 + 𝑤0 = 1

⇒ 𝑤0 = 𝑦 𝑠 − 𝒘𝑇𝒙 𝑠

Hard-margin SVM: Dual problem

Classifying new samples using only SVs

31

 Classification of a new sample 𝒙:

 𝑦 = sign 𝑤0 + 𝒘𝑇𝒙

 𝑦 = sign 𝑤0 +
𝛼𝑛>0

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑇

𝒙

 𝑦 = sign(𝑦(𝑠) −

𝛼𝑛>0

𝛼𝑛𝑦(𝑛)𝒙 𝑛 𝑇
𝒙(𝑠) +

𝛼𝑛>0
𝛼𝑛𝑦 𝑛 𝒙 𝑛 𝑇

𝒙)

 The classifier is based on the expansion in terms of dot

products of 𝒙 with support vectors.

Support vectors are sufficient to

predict labels of new samples𝑤0

Hard-margin SVM: Dual problem

32

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 𝛼𝑛 ≥ 0 𝑛 = 1, … , 𝑁

 Only the dot product of each pair of training data appears in

the optimization problem

 An important property that is helpful to extend to non-linear SVM

In the transformed space

33

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦 𝑛 𝑦 𝑚 𝜙 𝒙 𝑛 𝑇
𝜙 𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 𝛼𝑛 ≥ 0 𝑛 = 1, … , 𝑁

𝜙(.)

Beyond linear separability

34

 When training samples are not linearly separable, it has

no solution.

 How to extend it to find a solution even though the

classes are not exactly linearly separable.

Beyond linear separability

35

 How to extend the hard-margin SVM to allow

classification error

 Overlapping classes that can be approximately separated by a

linear boundary

 Noise in the linearly separable classes

𝑥2

𝑥1 𝑥1

Beyond linear separability: Soft-margin SVM

36

 Minimizing the number of misclassified points?!

 NP-complete

 Soft margin:

 Maximizing a margin while trying to minimize the distance

between misclassified points and their correct margin plane

Error measure

37

 Margin violation amount 𝜉𝑛 (𝜉𝑛 ≥ 0):

 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛

 Total violation: 𝑛=1
𝑁 𝜉𝑛

Soft-margin SVM: Optimization problem

38

 SVM with slack variables: allows samples to fall within the

margin, but penalizes them

min
𝒘,𝑤0, 𝜉𝑛 𝑛=1

𝑁

1
2

𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

𝜉𝑛: slack variables

0 < 𝜉𝑛 < 1: if 𝒙 𝑛 is correctly

classified but inside margin

𝜉𝑛 > 1: if 𝒙 𝑛 is misclassifed

𝑥2

𝑥1

𝜉 < 1

𝜉 > 1

Soft-margin SVM

39

 linear penalty (hinge loss) for a sample if it is misclassified

or lied in the margin

 tries to maintain 𝜉𝑛 small while maximizing the margin.

 always finds a solution (as opposed to hard-margin SVM)

 more robust to the outliers

 Soft margin problem is still a convex QP

Soft-margin SVM: Parameter 𝐶

40

 𝐶 is a tradeoff parameter:

 small 𝐶 allows margin constraints to be easily ignored

 large margin

 large 𝐶 makes constraints hard to ignore

 narrow margin

 𝐶 → ∞ enforces all constraints: hard margin

 𝐶 can be determined using a technique like cross-

validation

Soft-margin SVM: Cost function

41

min
𝒘,𝑤0, 𝜉𝑛 𝑛=1

𝑁

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

 It is equivalent to the unconstrained optimization
problem:

min
𝒘,𝑤0

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

max(0,1 − 𝑦(𝑛)(𝒘𝑇𝒙(𝑛) + 𝑤0))

SVM loss function

42

 Hinge loss vs. 0-1 loss

𝒘𝑇𝒙 + 𝑤0

0-1 Loss

𝑦 = 1

Hinge Loss

max(0,1 − 𝑦(𝒘𝑇𝒙 + 𝑤0))

Lagrange formulation

43

ℒ 𝒘,𝑤0, 𝝃, 𝜶, 𝜷

=
1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

+
𝑛=1

𝑁

𝛼𝑛 1 − 𝜉𝑛 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0) −
𝑛=1

𝑁

𝛽𝑛𝜉𝑛

 Minimize w.r.t. 𝒘, 𝑤0, 𝝃 and maximize w.r.t. 𝛼𝑛 ≥ 0 and 𝛽𝑛

≥ 0
min

𝒘,𝑤0, 𝜉𝑛 𝑛=1
𝑁

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

Lagrange formulation

44

 ℒ 𝒘, 𝑤0, 𝝃, 𝜶, 𝜷 =
1

2
𝒘 2 + 𝐶 𝑛=1

𝑁 𝜉𝑛 + 𝑛=1
𝑁 𝛼𝑛 1

Soft-margin SVM: Dual problem

45

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 0 ≤ 𝛼𝑛 ≤ 𝐶 𝑛 = 1, … , 𝑁

 After solving the above quadratic problem, 𝒘 is find as:

𝒘 =

𝑛=1

𝑁

𝛼𝑛 𝑦(𝑛)𝒙(𝑛)

Soft-margin SVM: Support vectors

46

 SupportVectors: 𝛼𝑛 > 0

 If 0 < 𝛼𝑛 < 𝐶 (margin support vector)

 If 𝛼 = 𝐶 (non-margin support vector)

𝐶 − 𝛼𝑛 − 𝛽𝑛 = 0

SVs on the margin

SVs on or over the margin

𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 = 1 (𝜉𝑛 = 0)

𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 < 1 (𝜉𝑛 > 0)

SVM: Summary

47

 Hard margin: maximizing margin

 Soft margin: handling noisy data and overlapping classes

 Slack variables in the problem

 Dual problems of hard-margin and soft-margin SVM

 Classifier decision in terms of support vectors

 Dual problems lead us to non-linear SVM method easily by

kernel substitution

Not linearly separable data

48

 Noisy data or overlapping classes

 (we discussed about it: soft margin)

 Near linearly separable

 Non-linear decision surface

 Transform to a new feature space

𝑥2

𝑥1

𝑥2

𝑥1

Nonlinear SVM

49

 Assume a transformation 𝜙: ℝ𝑑 → ℝ𝑚 on the feature

space

 𝒙 → 𝝓 𝒙

 Find a hyper-plane in the transformed feature space:

𝑥2

𝑥1 𝜙1(𝒙)

𝜙2(𝒙)

𝜙: 𝒙 → 𝝓 𝒙

𝒘𝑇𝝓 𝒙 + 𝑤0 = 0

{𝜙1(𝒙),...,𝜙𝑚(𝒙)}: set of basis functions (or features)

𝜙𝑖 𝒙 : ℝ𝑑 → ℝ

𝝓 𝒙 = [𝜙1(𝒙), . . . , 𝜙𝑚(𝒙)]

Soft-margin SVM in a transformed space:

Primal problem

50

 Primal problem:

min
𝒘,𝑤0

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝝓(𝒙 𝑛) + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

 𝒘 ∈ ℝ𝑚: the weights that must be found

 If 𝑚 ≫ 𝑑 (very high dimensional feature space) then there are

many more parameters to learn

Soft-margin SVM in a transformed space:

Dual problem

51

 Optimization problem:

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝝓 𝒙(𝑛) 𝑇
𝝓 𝒙(𝑚)

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 0 ≤ 𝛼𝑛 ≤ 𝐶 𝑛 = 1, … , 𝑁

 If we have inner products 𝝓 𝒙(𝑖) 𝑇
𝝓 𝒙(𝑗) , only 𝜶

= [𝛼1, … , 𝛼𝑁] needs to be learnt.

 not necessary to learn 𝑚 parameters as opposed to the primal problem

Classifying a new data

52

 𝑦 = 𝑠𝑖𝑔𝑛 𝑤0 + 𝒘𝑇𝝓(𝒙)

where 𝒘 = 𝛼𝑛>0 𝛼𝑛 𝑦(𝑛)𝝓(𝒙(𝑛))

and 𝑤0 = 𝑦(𝑠) − 𝒘𝑇𝝓(𝒙(𝑠))

Kernel SVM

53

 Learns linear decision boundary in a high dimension space

without explicitly working on the mapped data

 Let 𝝓 𝒙 𝑇𝝓 𝒙′ = 𝐾(𝒙, 𝒙′) (kernel)

 Example: 𝒙 = 𝑥1, 𝑥2 and second-order 𝝓:

𝝓 𝒙 = 1, 𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, 𝑥1𝑥2

𝐾 𝒙, 𝒙′

= 1 + 𝑥1𝑥1
′ + 𝑥2𝑥2

′ + 𝑥1
2𝑥1

′2 + 𝑥2
2𝑥2

′2 + 𝑥1𝑥1
′𝑥2𝑥2

′

Kernel trick

54

 Compute 𝐾 𝒙, 𝒙′ without transforming 𝒙 and 𝒙′

 Example: Consider 𝐾 𝒙, 𝒙′ = 1 + 𝒙𝑇𝒙′ 2

= 1 + 𝑥1𝑥1
′ + 𝑥2𝑥2

′ 2

= 1 + 2𝑥1𝑥1
′ + 2𝑥2𝑥2

′ + 𝑥1
2𝑥1

′2 + 𝑥2
2𝑥2

′2 + 2𝑥1𝑥1
′𝑥2𝑥2

′

This is an inner product in:

𝝓 𝒙 = 1, 2𝑥1, 2𝑥2, 𝑥1
2, 𝑥2

2, 2𝑥1𝑥2

𝝓 𝒙′ = 1, 2𝑥1
′ , 2𝑥2

′ , 𝑥′1
2, 𝑥′2

2, 2𝑥1
′𝑥2

′

Polynomial kernel: Degree two

55

 We instead use 𝐾(𝒙, 𝒙′) = 𝒙𝑇𝒙′ + 1 2 that corresponds to:

𝝓 𝒙

= 1, 2𝑥1, … , 2𝑥𝑑 , 𝑥1
2, . . , 𝑥𝑑

2, 2𝑥1𝑥2, … , 2𝑥1𝑥𝑑 , 2𝑥2𝑥3, … , 2𝑥𝑑−1𝑥𝑑

𝑇

𝑑-dimensional feature space 𝒙 = 𝑥1, … ,𝑥𝑑
𝑇

Polynomial kernel

56

 This can similarly be generalized to d-dimensioan 𝒙 and 𝜙s are

polynomials of order 𝑀:
𝐾 𝒙, 𝒙′ = 1 + 𝒙𝑇𝒙′ 𝑀

= 1 + 𝑥1𝑥1
′ + 𝑥2𝑥2

′ + ⋯ + 𝑥𝑑𝑥𝑑
′ 𝑀

 Example: SVM boundary for a polynomial kernel

 𝑤0 + 𝒘𝑇𝝓 𝒙 = 0

 ⇒ 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖)𝝓 𝒙 𝑖 𝑇

𝝓 𝒙 = 0

 ⇒ 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖)𝑘(𝒙 𝑖 , 𝒙) = 0

 ⇒ 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖) 1 + 𝒙(𝑖)𝑇

𝒙
𝑀

= 0 Boundary is a

polynomial of order 𝑀

Why kernel?

57

 kernel functions 𝐾 can indeed be efficiently computed, with a
cost proportional to 𝑑 (the dimensionality of the input)
instead of 𝑚.

 Example: consider the second-order polynomial transform:

𝝓 𝒙 = 1, 𝑥1, … , 𝑥𝑑 , 𝑥1
2, 𝑥1𝑥2, … , 𝑥𝑑𝑥𝑑

𝑇

𝝓 𝒙 𝑇𝝓 𝒙′ = 1 +

𝑖=1

𝑑

𝑥𝑖𝑥𝑖
′ +

𝑖=1

𝑑

𝑗=1

𝑑

𝑥𝑖𝑥𝑗𝑥𝑖
′𝑥𝑗

′

𝝓 𝒙 𝑇𝝓 𝒙′ = 1 + 𝑥𝑇𝑥′ + 𝑥𝑇𝑥′ 2

𝑖=1

𝑑

𝑥𝑖𝑥𝑖
′ ×

𝑗=1

𝑑

𝑥𝑗𝑥𝑗
′

𝑚 = 1 + 𝑑 + 𝑑2

𝑂(𝑚)

𝑂(𝑑)

Gaussian or RBF kernel

58

 If 𝐾 𝒙, 𝒙′ is an inner product in some transformed space of x,
it is good

 𝐾 𝒙, 𝒙′ = exp(−
𝒙−𝒙′ 2

𝛾
)

 Take one dimensional case with 𝛾 = 1:

𝐾 𝑥, 𝑥′ = exp − 𝑥 − 𝑥′ 2

= exp −𝑥2 exp −𝑥′2 exp 2𝑥𝑥′

= exp −𝑥2 exp −𝑥′2

𝑘=1

∞
2𝑘𝑥𝑘𝑥′𝑘

𝑘!

Some common kernel functions

59

 Linear: 𝑘(𝒙, 𝒙′) = 𝒙𝑇𝒙′

 Polynomial: 𝑘 𝒙, 𝒙′ = (𝒙𝑇𝒙′ + 1)𝑀

 Gaussian: 𝑘 𝒙, 𝒙′ = exp(−
𝒙−𝒙′ 2

𝛾
)

 Sigmoid: 𝑘 𝒙, 𝒙′ = tanh(𝑎𝒙𝑇𝒙′ + 𝑏)

Kernel formulation of SVM

60

 Optimization problem:

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝝓 𝒙(𝑛) 𝑇
𝝓 𝒙(𝑚)

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 0 ≤ 𝛼𝑛 ≤ 𝐶 𝑛 = 1,… , 𝑁

𝑘(𝒙 𝑛 , 𝒙(𝑚))

𝑸 =
𝑦 1 𝑦 1 𝐾 𝒙 1 , 𝒙 1 ⋯ 𝑦 1 𝑦 𝑁 𝐾 𝒙 𝑁 , 𝒙 1

⋮ ⋱ ⋮
𝑦 𝑁 𝑦 1 𝐾 𝒙 𝑁 , 𝒙 1 ⋯ 𝑦 𝑁 𝑦 𝑁 𝐾 𝒙 𝑁 , 𝒙 𝑁

Classifying a new data

61

 𝑦 = 𝑠𝑖𝑔𝑛 𝑤0 + 𝒘𝑇𝝓(𝒙)

where 𝒘 = 𝛼𝑛>0 𝛼𝑛 𝑦(𝑛)𝝓(𝒙(𝑛))

and 𝑤0 = 𝑦(𝑠) − 𝒘𝑇𝝓(𝒙(𝑠))

 𝑦 = 𝑠𝑖𝑔𝑛 𝑤0 +

𝛼𝑛>0

𝛼𝑛 𝑦 𝑛 𝝓 𝒙 𝑛 𝑇
𝝓(𝒙)

𝑤0 = 𝑦(𝑠) −

𝛼𝑛>0

𝛼𝑛 𝑦 𝑛 𝝓 𝒙 𝑛 𝑇
𝝓 𝒙 𝑠

𝑘(𝒙 𝑛 , 𝒙)

𝑘(𝒙 𝑛 , 𝒙(𝑠))

Gaussian kernel

62

 Example: SVM boundary for a gaussian kernel

 Considers a Gaussian function around each data point.

 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖)exp(−

𝒙−𝒙(𝑖) 2

𝜎
) = 0

 SVM + Gaussian Kernel can classify any arbitrary training set

 Training error is zero when 𝜎 → 0
 All samples become support vectors (likely overfiting)

Hard margin Example

63

 For narrow Gaussian (large 𝜎), even the protection of a large

margin cannot suppress overfitting.

SVM Gaussian kernel: Example

64 This example has been adopted from Zisserman’s slides

𝑓 𝒙 = 𝑤0 +
𝛼𝑖>0

𝛼𝑖𝑦
(𝑖)exp(−

𝒙 − 𝒙(𝑖) 2

2𝜎2)

SVM Gaussian kernel: Example

65 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

66 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

67
This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

68 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

69 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

70 This example has been adopted from Zisserman’s slides

Kernel trick: Idea

71

 Kernel trick → Extension of many well-known algorithms to

kernel-based ones

 By substituting the dot product with the kernel function

 𝑘 𝒙, 𝒙′ = 𝝓 𝒙 𝑇𝝓(𝒙′)

 𝑘 𝒙, 𝒙′ shows the dot product of 𝒙 and 𝒙′ in the transformed space.

 Idea: when the input vectors appears only in the form of dot

products, we can use kernel trick

 Solving the problem without explicitly mapping the data

 Explicit mapping is expensive if 𝝓 𝒙 is very high dimensional

Kernel trick: Idea (Cont’d)

72

 Instead of using a mapping 𝝓: 𝒳 ← ℱ to represent 𝒙 ∈ 𝒳 by

𝝓(𝒙) ∈ ℱ, a similarity function 𝑘: 𝒳 × 𝒳 → ℝ is used.

 We specify only an inner product function between points in the

transformed space (not their coordinates)

 In many cases, the inner product in the embedding space can be

computed efficiently.

Constructing kernels

73

 Construct kernel functions directly

 Ensure that it is a valid kernel

 Corresponds to an inner product in some feature space.

 Example: 𝑘(𝒙, 𝒙′) = 𝒙𝑇𝒙′ 2

 Corresponding mapping: 𝝓 𝒙 = 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2 𝑇
for 𝒙

= 𝑥1, 𝑥2
𝑇

 We need a way to test whether a kernel is valid without

having to construct 𝝓 𝒙

Valid kernel: Necessary & sufficient conditions

74

 Gram matrix 𝑲𝑁×𝑁: 𝐾𝑖𝑗 = 𝑘(𝒙(𝑖), 𝒙(𝑗))

 Restricting the kernel function to a set of points {𝒙 1 , 𝒙 2 , … , 𝒙(𝑁)}

𝐾 =
𝑘(𝒙(1), 𝒙(1)) ⋯ 𝑘(𝒙(1), 𝒙(𝑁))

⋮ ⋱ ⋮
𝑘(𝒙(𝑁), 𝒙(1)) ⋯ 𝑘(𝒙(𝑁), 𝒙(𝑁))

 Mercer Theorem: The kernel matrix is Symmetric Positive

Semi-Definite (for any choice of data points)

 Any symmetric positive definite matrix can be regarded as a kernel

matrix, that is as an inner product matrix in some space

[Shawe-Taylor & Cristianini 2004]

Extending linear methods to kernelized ones

75

 Kernelized version of linear methods

 Linear methods are famous

 Unique optimal solutions, faster learning algorithms, and better analysis

 However, we often require nonlinear methods in real-world problems

and so we can use kernel-based version of these linear algorithms

 Replacing inner products with kernels in linear algorithms ⇒
very flexible methods

 We can operate in the mapped space without ever computing the

coordinates of the data in that space

Example: kernelized minimum distance

classifier

76

 If 𝒙 − 𝝁1 < 𝒙 − 𝝁2 then assign 𝒙 to 𝒞1

𝒙 − 𝝁1
𝑇 𝒙 − 𝝁1 < 𝒙 − 𝝁2

𝑇 𝒙 − 𝝁2

−2𝒙𝑇𝝁1 + 𝝁1
𝑇𝝁1 < −2𝒙𝑇𝝁2 + 𝝁2

𝑇𝝁2

−2

𝑦 𝑛 =1
𝒙𝑇𝒙 𝑛

𝑁1
+

𝑦 𝑛 =1

𝑦 𝑚 =1

𝒙 𝑛 𝑇
𝒙 𝑚

𝑁1 × 𝑁1
< −2

𝑦 𝑛 =2

𝒙𝑇𝒙 𝑛

𝑁2
+

𝑦 𝑛 =2

𝑦 𝑚 =2

𝒙 𝑛 𝑇
𝒙 𝑚

𝑁2 × 𝑁2

−2

𝑦 𝑛 =1
𝐾 𝒙, 𝒙 𝑛

𝑁1
+

𝑦 𝑛 =1

𝑦 𝑚 =1

𝐾 𝒙 𝑛 , 𝒙 𝑚

𝑁1 × 𝑁1
< −2

𝑦 𝑛 =2

𝐾 𝒙, 𝒙 𝑛

𝑁2
+

𝑦 𝑛 =2

𝑦 𝑚 =2

𝐾 𝒙 𝑛 , 𝒙 𝑚

𝑁2 × 𝑁2

Which information can be obtained from kernel?

77

 Example: we know all pairwise distances

 𝑑 𝝓 𝒙 ,𝝓 𝒛
2

= 𝝓 𝒙 − 𝝓 𝒛 2 = 𝑘 𝒙, 𝒙 + 𝑘 𝒛, 𝒛 − 2𝑘(𝒙, 𝒛)

 Therefore, we also know distance of points from center of mass of a set

 Many dimensionality reduction, clustering, and classification

methods can be described according to pairwise distances.

 This allow us to introduce kernelized versions of them

Example: Kernel ridge regression

78

min
𝒘

𝑛=1

𝑁

𝒘𝑇𝒙 𝑛 − 𝑦 𝑛 2
+ 𝜆𝒘𝑇𝒘

𝑛=1

𝑁

2𝒙 𝑛 𝒘𝑇𝒙 𝑛 − 𝑦 𝑛 + 2𝜆𝒘 ⇒ 𝒘 =

𝑛=1

𝑁

𝛼𝑛𝒙 𝑛

𝛼𝑛 = −
1

𝜆
𝒘𝑇𝒙 𝑛 − 𝑦 𝑛

Example: Kernel ridge regression (Cont’d)

79

min
𝒘

𝑛=1

𝑁

𝒘𝑇𝜙 𝒙 𝑛 − 𝑦 𝑛 2
+ 𝜆𝒘𝑇𝒘

 Dual representation:

𝐽 𝜶 = 𝜶𝑇𝚽𝚽𝑇𝚽𝚽𝑇𝜶 − 2𝜶𝑇𝚽𝚽𝑇𝒚 + 𝒚𝑇𝒚 + 𝜆𝜶𝑇𝚽𝚽𝑇𝜶

𝐽 𝜶 = 𝜶𝑇𝑲𝑲𝜶 − 2𝜶𝑇𝑲𝒚 + 𝒚𝑇𝒚 + 𝜆𝜶𝑇𝑲𝜶

𝛻𝜶𝐽 𝜶 = 𝟎 ⇒ 𝜶 = 𝑲 + 𝜆𝑰𝑁
−1𝒚

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝜙 𝒙 𝑛

Example: Kernel ridge regression (Cont’d)

80

 Prediction for new 𝒙:

𝑓 𝒙 = 𝒘𝑇𝜙 𝒙

= 𝜶𝑇𝚽𝜙 𝒙

=
𝐾(𝒙(1), 𝒙)

⋮
𝐾(𝒙(𝑁), 𝒙)

𝑇

𝑲 + 𝜆𝑰𝑁
−1𝒚

𝒘 = 𝚽𝑇𝜶

Kernels for structured data

81

 Kernels also can be defined on general types of data

 Kernel functions do not need to be defined over vectors

 just we need a symmetric positive definite matrix

 Thus, many algorithms can work with general (non-vectorial)

data

 Kernels exist to embed strings, trees, graphs, …

 This may be more important than nonlinearity

 kernel-based version of classical learning algorithms for recognition

of structured data

Kernel function for objects

82

 Sets: Example of kernel function for sets:

𝑘 𝐴, 𝐵 = 2 𝐴∩𝐵

 Strings: The inner product of the feature vectors for two

strings can be defined as

 e.g. sum over all common subsequences weighted according to

their frequency of occurrence and lengths

A E G A T E A G G

E G T E A G A E G A T G

Kernel trick advantages: summary

83

 Operating in the mapped space without ever computing the

coordinates of the data in that space

 Besides vectors, we can introduce kernel functions for

structured data (graphs, strings, etc.)

 Much of the geometry of the data in the embedding space is

contained in all pairwise dot products

 In many cases, inner product in the embedding space can be

computed efficiently.

Resources

84

 C. Bishop, “Pattern Recognition and Machine Learning”,

Chapter 6.1-6.2, 7.1.

 Yaser S. Abu-Mostafa, et al., “Learning from Data”, Chapter

8.

