
CE-717: Machine Learning
Sharif University of Technology

Fall 2016

Soleymani

Support Vector Machine (SVM)

and Kernel Methods

Outline

 Margin concept

 Hard-Margin SVM

 Soft-Margin SVM

 Dual Problems of Hard-Margin SVM and Soft-Margin SVM

 Nonlinear SVM

 Kernel trick

 Kernel methods

2

Margin

3

 Which line is better to select as the boundary to provide
more generalization capability?

 Margin for a hyperplane that separates samples of two
linearly separable classes is:

 The smallest distance between the decision boundary and any of the
training samples

𝑥2

𝑥1

Larger margin provides better

generalization to unseen data

What is better linear separation

4

 Linearly separable data

 Which line is better?

 Why the bigger margin?

Maximum margin

5

 SVM finds the solution with maximum margin

 Solution: a hyperplane that is farthest from all training samples

 The hyperplane with the largest margin has equal distances to
the nearest sample of both classes

𝑥2

𝑥1

𝑥2

𝑥1 Larger margin

Finding 𝒘 with large margin

6

 Two preliminaries:

 Pull out 𝑤0

 𝒘 is 𝑤1, … , 𝑤𝑑

 Normalize 𝒘, 𝑤0

 Let 𝒙(𝑛) be the nearest point to the plane

 𝒘𝑇𝒙(𝑛) + 𝑤0 = 1

𝒘𝑇𝒙 + 𝑤0 = 0 We have no 𝑥0

Distance between an 𝒙(𝑛) and the plane

7

distance =
𝒘𝑇𝒙(𝑛) + 𝑤0

𝒘

𝒙(𝑛)

distance ×
𝒘

𝒘

The optimization problem

8

max
𝒘,𝑤0

2

𝒘

s. t. min
𝑛=1,…,𝑁

𝒘𝑇𝒙 𝑛 + 𝑤0 = 1

min
𝒘,𝑤0

1

2
𝒘 2

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 𝑛 = 1, … , 𝑁

Notice: 𝒘𝑇𝒙 𝑛 + 𝑤0 = 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0

From all the hyperplanes

that correctly classify data

Hard-margin SVM: Optimization problem

9

max
𝒘,𝑤0

2

𝒘

s. t. 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 , 𝑛 = 1, … , 𝑁

𝑥2

𝑥1

1

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 1
𝒘𝑇𝒙 + 𝑤0 = −1

𝒘

Margin:
2

𝒘

Hard-margin SVM: Optimization problem

10

max
𝒘,𝑤0

2

𝒘

s. t. 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 ∀𝑦 𝑛 = 1

𝒘𝑇𝒙 𝑛 + 𝑤0 ≤ −1 ∀𝑦 𝑛 = −1

𝑥2

𝑥1

1

𝒘

𝒘𝑇𝒙 + 𝑤0 = 0

𝒘𝑇𝒙 + 𝑤0 = 1
𝒘𝑇𝒙 + 𝑤0 = −1

𝒘

Margin:
2

𝒘

Hard-margin SVM: Optimization problem

11

We can equivalently optimize:

min
𝒘,𝑤0

1

2
𝒘𝑇𝒘

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 𝑛 = 1, … , 𝑁

 It is a convex Quadratic Programming (QP) problem

 There are computationally efficient packages to solve it.

 It has a global minimum (if any).

Quadratic programming

12

min
𝒙

1

2
𝒙𝑇𝑸𝒙 + 𝒄𝑇𝒙

s. t. 𝑨𝒙 ≤ 𝒃
𝑬𝒙 = 𝒅

Dual formulation of the SVM

13

 We are going to introduce the dual SVM problem which

is equivalent to the original primal problem. The dual

problem:

 is often easier

 gives us further insights into the optimal hyperplane

 enable us to exploit the kernel trick

Optimization: Lagrangian multipliers

14

𝑝∗ = min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1,… , 𝑚
ℎ𝑖 𝒙 = 0 𝑖 = 1, … , 𝑝

ℒ 𝒙, 𝜶, 𝝀 = 𝑓 𝒙 +

𝑖=1

𝑚

𝛼𝑖 𝑔𝑖 𝒙 +

𝑖=1

𝑝

𝜆𝑖 ℎ𝑖 𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀 =

∞ any 𝑔𝑖 𝒙 > 0

∞ any ℎ𝑖 𝒙 ≠ 0

𝑓 𝒙 otherwise

𝑝∗ = min
𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀

Lagrangian multipliers

𝜶 = 𝛼1, … , 𝛼𝑚

𝝀 = [𝜆1, … , 𝜆𝑝]

Optimization: Dual problem

15

 In general, we have:

max
𝑥

min
𝑦

ℎ(𝑥, 𝑦) ≤ min
𝑦

max
𝑥

ℎ(𝑥, 𝑦)

 Primal problem: 𝑝∗ = min
𝒙

max
𝛼𝑖≥0 , 𝜆𝑖

ℒ 𝒙, 𝜶, 𝝀

 Dual problem: 𝑑∗ = max
𝛼𝑖≥0 , 𝜆𝑖

min
𝒙

ℒ 𝒙, 𝜶, 𝝀

 Obtained by swapping the order of min and max

 𝑑∗ ≤ 𝑝∗

 When the original problem is convex (𝑓 and 𝑔 are convex

functions and ℎ is affine), we have strong duality 𝑑∗ = 𝑝∗

Hard-margin SVM: Dual problem

16

min
𝒘,𝑤0

1

2
𝒘 2

s. t. 𝑦 𝑖 𝒘𝑇𝒙 𝑖 + 𝑤0 ≥ 1 𝑖 = 1, … , 𝑁

 By incorporating the constraints through lagrangian multipliers,
we will have:

min
𝒘,𝑤0

max
{𝛼𝑛≥0}

1

2
𝒘 2 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

 Dual problem (changing the order of min and max in the
above problem):

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

1

2
𝒘 2 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

Hard-margin SVM: Dual problem

17

max
{𝛼𝑛≥0}

min
𝒘,𝑤0

ℒ 𝒘,𝑤0, 𝜶

ℒ 𝒘,𝑤0, 𝜶 =
1

2
𝒘 2 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

 𝛻𝒘ℒ 𝒘,𝑤0, 𝜶 = 0 ⇒ 𝒘 − 𝑛=1
𝑁 𝛼𝑛𝑦 𝑛 𝒙 𝑛 = 𝟎

 ⇒ 𝒘 = 𝑛=1
𝑁 𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝜕ℒ 𝒘,𝑤0,𝜶

𝜕𝑤𝟎
= 0 ⇒ − 𝑛=1

𝑁 𝛼𝑛𝑦(𝑛) = 0

𝑤0 do not appear, instead, a “global” constraint

on 𝜶 is created.

Substituting

18

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Substituting

19

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

We get

ℒ 𝒘,𝑤0, 𝜶 =
𝑛=1

𝑁

𝛼𝑛

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Substituting

20

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

We get

ℒ 𝒘,𝑤0, 𝜶 =
𝑛=1

𝑁

𝛼𝑛

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Substituting

21

In the Largrangian

ℒ 𝒘, 𝑤0, 𝜶 =
1

2
𝒘𝑇𝒘 +

𝑛=1

𝑁

𝛼𝑛 1 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0)

We get

ℒ 𝜶 =
𝑛=1

𝑁

𝛼𝑛 −
1
2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑛=1

𝑁

𝛼𝑛𝑦(𝑛) = 0

Maximize w.r.t. 𝜶 subject to 𝛼𝑛 ≥ 0 for 𝑛 = 1, … ,𝑁 and 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

Hard-margin SVM: Dual problem

22

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 𝛼𝑛 ≥ 0 𝑛 = 1, … , 𝑁

 It is a convex QP

Solution

23

 Quadratic programming:

min
𝜶

1

2
𝜶𝑇

𝑦 1 𝑦 1 𝒙 1 𝑇
𝒙 1 ⋯ 𝑦 1 𝑦 𝑁 𝒙 1 𝑇

𝒙 𝑁

⋮ ⋱ ⋮

𝑦 𝑁 𝑦 1 𝒙 𝑁 𝑇
𝒙 1 ⋯ 𝑦 𝑁 𝑦 𝑁 𝒙 𝑁 𝑇

𝒙 𝑁

𝜶 + (−𝟏)𝑇𝜶

s. t. −𝜶 ≤ 𝟎
𝒚𝑇𝜶 = 𝟎

Finding the hyperplane

24

 After finding 𝜶 by QP, we find 𝒘:

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

 How to find 𝑤0?

 we discuss it after introducing support vectors

Karush-Kuhn-Tucker (KKT) conditions

25

 Necessary conditions for the solution [𝒘∗, 𝑤0
∗, 𝜶∗]:

 𝛻𝒘ℒ 𝒘, 𝑤0, 𝜶 𝒘∗,𝑤0
∗ ,𝜶∗ = 0

𝜕ℒ 𝒘,𝑤0,𝜶

𝜕𝑤0
 𝒘∗,𝑤0

∗ ,𝜶∗ = 0

 𝛼𝑛
∗ ≥ 0 𝑛 = 1, … , 𝑁

 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 + 𝑤0
∗ ≥ 1 𝑛 = 1, … , 𝑁

 𝛼𝑖
∗ 1 − 𝑦 𝑛 𝒘∗𝑇𝒙 𝑛 + 𝑤0

∗ = 0 𝑛 = 1, … , 𝑁

𝛻𝒙ℒ 𝒙, 𝜶
𝒙∗,𝜶∗

= 0

𝛼𝑖
∗ ≥ 0 𝑖 = 1, … , 𝑚

𝑔𝑖 𝒙∗ ≤ 0 𝑖 = 1, … , 𝑚
𝛼𝑖

∗𝑔𝑖 𝒙∗ = 0 𝑖 = 1, … , 𝑚

ℒ 𝒙, 𝜶 = 𝑓 𝒙 + 𝛼𝑖 𝑔𝑖 𝒙

In general, the optimal 𝒙∗, 𝜶∗

satisfies KKT conditions:

min
𝒙

𝑓(𝒙)

s. t. 𝑔𝑖 𝒙 ≤ 0 𝑖 = 1, … , 𝑚

Karush-Kuhn-Tucker (KKT) conditions

26
[wikipedia]

Inactive

constraint

(𝛼 = 0)

Active

constraint

Hard-margin SVM: Support vectors

27

 Inactive constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 > 1

 ⇒ 𝛼𝑛 = 0 and thus 𝒙 𝑛 is not a support vector.

 Active constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 = 1

 ⇒ 𝛼𝑛 can be greater than 0 and thus 𝒙 𝑖 can be a support vector.

𝑥2

𝑥1

𝛼 > 0

𝛼 > 0
𝛼 > 0

Hard-margin SVM: Support vectors

28

 Inactive constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 > 1

 ⇒ 𝛼𝑛 = 0 and thus 𝒙 𝑛 is not a support vector.

 Active constraint: 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 = 1

𝑥2

𝑥1

𝛼 > 0

𝛼 > 0
𝛼 > 0

𝛼 = 0

𝛼 = 0

A sample with 𝛼𝑛 = 0 can also

lie on one of the margin

hyperplanes

Hard-margin SVM: Support vectors

29

 SupportVectors (SVs)= {𝒙 𝑛 𝛼𝑛 > 0}

 The direction of hyper-plane can be found only based on

support vectors:

𝒘 =

𝛼𝑛>0

𝛼𝑛 𝑦(𝑛)𝒙(𝑛)

𝑥2

𝑥1

Finding the hyperplane

30

 After finding 𝜶 by QP, we find 𝒘:

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝑦 𝑛 𝒙 𝑛

 How to find 𝑤0?

 Each of the samples that has 𝛼𝑠 > 0 is on the margin, thus we

solve for 𝑤0 using any of SVs:

𝒘𝑇𝒙 𝑠 + 𝑤0 = 1

𝑦 𝑠 𝒘𝑇𝒙 𝑠 + 𝑤0 = 1

⇒ 𝑤0 = 𝑦 𝑠 − 𝒘𝑇𝒙 𝑠

Hard-margin SVM: Dual problem

Classifying new samples using only SVs

31

 Classification of a new sample 𝒙:

 𝑦 = sign 𝑤0 + 𝒘𝑇𝒙

 𝑦 = sign 𝑤0 +
𝛼𝑛>0

𝛼𝑛𝑦 𝑛 𝒙 𝑛

𝑇

𝒙

 𝑦 = sign(𝑦(𝑠) −

𝛼𝑛>0

𝛼𝑛𝑦(𝑛)𝒙 𝑛 𝑇
𝒙(𝑠) +

𝛼𝑛>0
𝛼𝑛𝑦 𝑛 𝒙 𝑛 𝑇

𝒙)

 The classifier is based on the expansion in terms of dot

products of 𝒙 with support vectors.

Support vectors are sufficient to

predict labels of new samples𝑤0

Hard-margin SVM: Dual problem

32

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 𝛼𝑛 ≥ 0 𝑛 = 1, … , 𝑁

 Only the dot product of each pair of training data appears in

the optimization problem

 An important property that is helpful to extend to non-linear SVM

In the transformed space

33

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦 𝑛 𝑦 𝑚 𝜙 𝒙 𝑛 𝑇
𝜙 𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 𝛼𝑛 ≥ 0 𝑛 = 1, … , 𝑁

𝜙(.)

Beyond linear separability

34

 When training samples are not linearly separable, it has

no solution.

 How to extend it to find a solution even though the

classes are not exactly linearly separable.

Beyond linear separability

35

 How to extend the hard-margin SVM to allow

classification error

 Overlapping classes that can be approximately separated by a

linear boundary

 Noise in the linearly separable classes

𝑥2

𝑥1 𝑥1

Beyond linear separability: Soft-margin SVM

36

 Minimizing the number of misclassified points?!

 NP-complete

 Soft margin:

 Maximizing a margin while trying to minimize the distance

between misclassified points and their correct margin plane

Error measure

37

 Margin violation amount 𝜉𝑛 (𝜉𝑛 ≥ 0):

 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛

 Total violation: 𝑛=1
𝑁 𝜉𝑛

Soft-margin SVM: Optimization problem

38

 SVM with slack variables: allows samples to fall within the

margin, but penalizes them

min
𝒘,𝑤0, 𝜉𝑛 𝑛=1

𝑁

1
2

𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

𝜉𝑛: slack variables

0 < 𝜉𝑛 < 1: if 𝒙 𝑛 is correctly

classified but inside margin

𝜉𝑛 > 1: if 𝒙 𝑛 is misclassifed

𝑥2

𝑥1

𝜉 < 1

𝜉 > 1

Soft-margin SVM

39

 linear penalty (hinge loss) for a sample if it is misclassified

or lied in the margin

 tries to maintain 𝜉𝑛 small while maximizing the margin.

 always finds a solution (as opposed to hard-margin SVM)

 more robust to the outliers

 Soft margin problem is still a convex QP

Soft-margin SVM: Parameter 𝐶

40

 𝐶 is a tradeoff parameter:

 small 𝐶 allows margin constraints to be easily ignored

 large margin

 large 𝐶 makes constraints hard to ignore

 narrow margin

 𝐶 → ∞ enforces all constraints: hard margin

 𝐶 can be determined using a technique like cross-

validation

Soft-margin SVM: Cost function

41

min
𝒘,𝑤0, 𝜉𝑛 𝑛=1

𝑁

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

 It is equivalent to the unconstrained optimization
problem:

min
𝒘,𝑤0

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

max(0,1 − 𝑦(𝑛)(𝒘𝑇𝒙(𝑛) + 𝑤0))

SVM loss function

42

 Hinge loss vs. 0-1 loss

𝒘𝑇𝒙 + 𝑤0

0-1 Loss

𝑦 = 1

Hinge Loss

max(0,1 − 𝑦(𝒘𝑇𝒙 + 𝑤0))

Lagrange formulation

43

ℒ 𝒘,𝑤0, 𝝃, 𝜶, 𝜷

=
1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

+
𝑛=1

𝑁

𝛼𝑛 1 − 𝜉𝑛 − 𝑦 𝑛 (𝒘𝑇𝒙(𝑛) + 𝑤0) −
𝑛=1

𝑁

𝛽𝑛𝜉𝑛

 Minimize w.r.t. 𝒘, 𝑤0, 𝝃 and maximize w.r.t. 𝛼𝑛 ≥ 0 and 𝛽𝑛

≥ 0
min

𝒘,𝑤0, 𝜉𝑛 𝑛=1
𝑁

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

Lagrange formulation

44

 ℒ 𝒘, 𝑤0, 𝝃, 𝜶, 𝜷 =
1

2
𝒘 2 + 𝐶 𝑛=1

𝑁 𝜉𝑛 + 𝑛=1
𝑁 𝛼𝑛 1

Soft-margin SVM: Dual problem

45

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝒙 𝑛 𝑇
𝒙 𝑚

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 0 ≤ 𝛼𝑛 ≤ 𝐶 𝑛 = 1, … , 𝑁

 After solving the above quadratic problem, 𝒘 is find as:

𝒘 =

𝑛=1

𝑁

𝛼𝑛 𝑦(𝑛)𝒙(𝑛)

Soft-margin SVM: Support vectors

46

 SupportVectors: 𝛼𝑛 > 0

 If 0 < 𝛼𝑛 < 𝐶 (margin support vector)

 If 𝛼 = 𝐶 (non-margin support vector)

𝐶 − 𝛼𝑛 − 𝛽𝑛 = 0

SVs on the margin

SVs on or over the margin

𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 = 1 (𝜉𝑛 = 0)

𝑦 𝑛 𝒘𝑇𝒙 𝑛 + 𝑤0 < 1 (𝜉𝑛 > 0)

SVM: Summary

47

 Hard margin: maximizing margin

 Soft margin: handling noisy data and overlapping classes

 Slack variables in the problem

 Dual problems of hard-margin and soft-margin SVM

 Classifier decision in terms of support vectors

 Dual problems lead us to non-linear SVM method easily by

kernel substitution

Not linearly separable data

48

 Noisy data or overlapping classes

 (we discussed about it: soft margin)

 Near linearly separable

 Non-linear decision surface

 Transform to a new feature space

𝑥2

𝑥1

𝑥2

𝑥1

Nonlinear SVM

49

 Assume a transformation 𝜙: ℝ𝑑 → ℝ𝑚 on the feature

space

 𝒙 → 𝝓 𝒙

 Find a hyper-plane in the transformed feature space:

𝑥2

𝑥1 𝜙1(𝒙)

𝜙2(𝒙)

𝜙: 𝒙 → 𝝓 𝒙

𝒘𝑇𝝓 𝒙 + 𝑤0 = 0

{𝜙1(𝒙),...,𝜙𝑚(𝒙)}: set of basis functions (or features)

𝜙𝑖 𝒙 : ℝ𝑑 → ℝ

𝝓 𝒙 = [𝜙1(𝒙), . . . , 𝜙𝑚(𝒙)]

Soft-margin SVM in a transformed space:

Primal problem

50

 Primal problem:

min
𝒘,𝑤0

1

2
𝒘 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

s. t. 𝑦 𝑛 𝒘𝑇𝝓(𝒙 𝑛) + 𝑤0 ≥ 1 − 𝜉𝑛 𝑛 = 1, … , 𝑁

𝜉𝑛 ≥ 0

 𝒘 ∈ ℝ𝑚: the weights that must be found

 If 𝑚 ≫ 𝑑 (very high dimensional feature space) then there are

many more parameters to learn

Soft-margin SVM in a transformed space:

Dual problem

51

 Optimization problem:

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝝓 𝒙(𝑛) 𝑇
𝝓 𝒙(𝑚)

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 0 ≤ 𝛼𝑛 ≤ 𝐶 𝑛 = 1, … , 𝑁

 If we have inner products 𝝓 𝒙(𝑖) 𝑇
𝝓 𝒙(𝑗) , only 𝜶

= [𝛼1, … , 𝛼𝑁] needs to be learnt.

 not necessary to learn 𝑚 parameters as opposed to the primal problem

Classifying a new data

52

 𝑦 = 𝑠𝑖𝑔𝑛 𝑤0 + 𝒘𝑇𝝓(𝒙)

where 𝒘 = 𝛼𝑛>0 𝛼𝑛 𝑦(𝑛)𝝓(𝒙(𝑛))

and 𝑤0 = 𝑦(𝑠) − 𝒘𝑇𝝓(𝒙(𝑠))

Kernel SVM

53

 Learns linear decision boundary in a high dimension space

without explicitly working on the mapped data

 Let 𝝓 𝒙 𝑇𝝓 𝒙′ = 𝐾(𝒙, 𝒙′) (kernel)

 Example: 𝒙 = 𝑥1, 𝑥2 and second-order 𝝓:

𝝓 𝒙 = 1, 𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, 𝑥1𝑥2

𝐾 𝒙, 𝒙′

= 1 + 𝑥1𝑥1
′ + 𝑥2𝑥2

′ + 𝑥1
2𝑥1

′2 + 𝑥2
2𝑥2

′2 + 𝑥1𝑥1
′𝑥2𝑥2

′

Kernel trick

54

 Compute 𝐾 𝒙, 𝒙′ without transforming 𝒙 and 𝒙′

 Example: Consider 𝐾 𝒙, 𝒙′ = 1 + 𝒙𝑇𝒙′ 2

= 1 + 𝑥1𝑥1
′ + 𝑥2𝑥2

′ 2

= 1 + 2𝑥1𝑥1
′ + 2𝑥2𝑥2

′ + 𝑥1
2𝑥1

′2 + 𝑥2
2𝑥2

′2 + 2𝑥1𝑥1
′𝑥2𝑥2

′

This is an inner product in:

𝝓 𝒙 = 1, 2𝑥1, 2𝑥2, 𝑥1
2, 𝑥2

2, 2𝑥1𝑥2

𝝓 𝒙′ = 1, 2𝑥1
′ , 2𝑥2

′ , 𝑥′1
2, 𝑥′2

2, 2𝑥1
′𝑥2

′

Polynomial kernel: Degree two

55

 We instead use 𝐾(𝒙, 𝒙′) = 𝒙𝑇𝒙′ + 1 2 that corresponds to:

𝝓 𝒙

= 1, 2𝑥1, … , 2𝑥𝑑 , 𝑥1
2, . . , 𝑥𝑑

2, 2𝑥1𝑥2, … , 2𝑥1𝑥𝑑 , 2𝑥2𝑥3, … , 2𝑥𝑑−1𝑥𝑑

𝑇

𝑑-dimensional feature space 𝒙 = 𝑥1, … ,𝑥𝑑
𝑇

Polynomial kernel

56

 This can similarly be generalized to d-dimensioan 𝒙 and 𝜙s are

polynomials of order 𝑀:
𝐾 𝒙, 𝒙′ = 1 + 𝒙𝑇𝒙′ 𝑀

= 1 + 𝑥1𝑥1
′ + 𝑥2𝑥2

′ + ⋯ + 𝑥𝑑𝑥𝑑
′ 𝑀

 Example: SVM boundary for a polynomial kernel

 𝑤0 + 𝒘𝑇𝝓 𝒙 = 0

 ⇒ 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖)𝝓 𝒙 𝑖 𝑇

𝝓 𝒙 = 0

 ⇒ 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖)𝑘(𝒙 𝑖 , 𝒙) = 0

 ⇒ 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖) 1 + 𝒙(𝑖)𝑇

𝒙
𝑀

= 0 Boundary is a

polynomial of order 𝑀

Why kernel?

57

 kernel functions 𝐾 can indeed be efficiently computed, with a
cost proportional to 𝑑 (the dimensionality of the input)
instead of 𝑚.

 Example: consider the second-order polynomial transform:

𝝓 𝒙 = 1, 𝑥1, … , 𝑥𝑑 , 𝑥1
2, 𝑥1𝑥2, … , 𝑥𝑑𝑥𝑑

𝑇

𝝓 𝒙 𝑇𝝓 𝒙′ = 1 +

𝑖=1

𝑑

𝑥𝑖𝑥𝑖
′ +

𝑖=1

𝑑

𝑗=1

𝑑

𝑥𝑖𝑥𝑗𝑥𝑖
′𝑥𝑗

′

𝝓 𝒙 𝑇𝝓 𝒙′ = 1 + 𝑥𝑇𝑥′ + 𝑥𝑇𝑥′ 2

𝑖=1

𝑑

𝑥𝑖𝑥𝑖
′ ×

𝑗=1

𝑑

𝑥𝑗𝑥𝑗
′

𝑚 = 1 + 𝑑 + 𝑑2

𝑂(𝑚)

𝑂(𝑑)

Gaussian or RBF kernel

58

 If 𝐾 𝒙, 𝒙′ is an inner product in some transformed space of x,
it is good

 𝐾 𝒙, 𝒙′ = exp(−
𝒙−𝒙′ 2

𝛾
)

 Take one dimensional case with 𝛾 = 1:

𝐾 𝑥, 𝑥′ = exp − 𝑥 − 𝑥′ 2

= exp −𝑥2 exp −𝑥′2 exp 2𝑥𝑥′

= exp −𝑥2 exp −𝑥′2

𝑘=1

∞
2𝑘𝑥𝑘𝑥′𝑘

𝑘!

Some common kernel functions

59

 Linear: 𝑘(𝒙, 𝒙′) = 𝒙𝑇𝒙′

 Polynomial: 𝑘 𝒙, 𝒙′ = (𝒙𝑇𝒙′ + 1)𝑀

 Gaussian: 𝑘 𝒙, 𝒙′ = exp(−
𝒙−𝒙′ 2

𝛾
)

 Sigmoid: 𝑘 𝒙, 𝒙′ = tanh(𝑎𝒙𝑇𝒙′ + 𝑏)

Kernel formulation of SVM

60

 Optimization problem:

max
𝜶

𝑛=1

𝑁

𝛼𝑛 −
1

2

𝑛=1

𝑁

𝑚=1

𝑁

𝛼𝑛𝛼𝑚𝑦(𝑛)𝑦(𝑚)𝝓 𝒙(𝑛) 𝑇
𝝓 𝒙(𝑚)

 Subject to 𝑛=1
𝑁 𝛼𝑛𝑦(𝑛) = 0

 0 ≤ 𝛼𝑛 ≤ 𝐶 𝑛 = 1,… , 𝑁

𝑘(𝒙 𝑛 , 𝒙(𝑚))

𝑸 =
𝑦 1 𝑦 1 𝐾 𝒙 1 , 𝒙 1 ⋯ 𝑦 1 𝑦 𝑁 𝐾 𝒙 𝑁 , 𝒙 1

⋮ ⋱ ⋮
𝑦 𝑁 𝑦 1 𝐾 𝒙 𝑁 , 𝒙 1 ⋯ 𝑦 𝑁 𝑦 𝑁 𝐾 𝒙 𝑁 , 𝒙 𝑁

Classifying a new data

61

 𝑦 = 𝑠𝑖𝑔𝑛 𝑤0 + 𝒘𝑇𝝓(𝒙)

where 𝒘 = 𝛼𝑛>0 𝛼𝑛 𝑦(𝑛)𝝓(𝒙(𝑛))

and 𝑤0 = 𝑦(𝑠) − 𝒘𝑇𝝓(𝒙(𝑠))

 𝑦 = 𝑠𝑖𝑔𝑛 𝑤0 +

𝛼𝑛>0

𝛼𝑛 𝑦 𝑛 𝝓 𝒙 𝑛 𝑇
𝝓(𝒙)

𝑤0 = 𝑦(𝑠) −

𝛼𝑛>0

𝛼𝑛 𝑦 𝑛 𝝓 𝒙 𝑛 𝑇
𝝓 𝒙 𝑠

𝑘(𝒙 𝑛 , 𝒙)

𝑘(𝒙 𝑛 , 𝒙(𝑠))

Gaussian kernel

62

 Example: SVM boundary for a gaussian kernel

 Considers a Gaussian function around each data point.

 𝑤0 + 𝛼𝑖>0 𝛼𝑖𝑦
(𝑖)exp(−

𝒙−𝒙(𝑖) 2

𝜎
) = 0

 SVM + Gaussian Kernel can classify any arbitrary training set

 Training error is zero when 𝜎 → 0
 All samples become support vectors (likely overfiting)

Hard margin Example

63

 For narrow Gaussian (large 𝜎), even the protection of a large

margin cannot suppress overfitting.

SVM Gaussian kernel: Example

64 This example has been adopted from Zisserman’s slides

𝑓 𝒙 = 𝑤0 +
𝛼𝑖>0

𝛼𝑖𝑦
(𝑖)exp(−

𝒙 − 𝒙(𝑖) 2

2𝜎2)

SVM Gaussian kernel: Example

65 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

66 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

67
This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

68 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

69 This example has been adopted from Zisserman’s slides

SVM Gaussian kernel: Example

70 This example has been adopted from Zisserman’s slides

Kernel trick: Idea

71

 Kernel trick → Extension of many well-known algorithms to

kernel-based ones

 By substituting the dot product with the kernel function

 𝑘 𝒙, 𝒙′ = 𝝓 𝒙 𝑇𝝓(𝒙′)

 𝑘 𝒙, 𝒙′ shows the dot product of 𝒙 and 𝒙′ in the transformed space.

 Idea: when the input vectors appears only in the form of dot

products, we can use kernel trick

 Solving the problem without explicitly mapping the data

 Explicit mapping is expensive if 𝝓 𝒙 is very high dimensional

Kernel trick: Idea (Cont’d)

72

 Instead of using a mapping 𝝓: 𝒳 ← ℱ to represent 𝒙 ∈ 𝒳 by

𝝓(𝒙) ∈ ℱ, a similarity function 𝑘: 𝒳 × 𝒳 → ℝ is used.

 We specify only an inner product function between points in the

transformed space (not their coordinates)

 In many cases, the inner product in the embedding space can be

computed efficiently.

Constructing kernels

73

 Construct kernel functions directly

 Ensure that it is a valid kernel

 Corresponds to an inner product in some feature space.

 Example: 𝑘(𝒙, 𝒙′) = 𝒙𝑇𝒙′ 2

 Corresponding mapping: 𝝓 𝒙 = 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2 𝑇
for 𝒙

= 𝑥1, 𝑥2
𝑇

 We need a way to test whether a kernel is valid without

having to construct 𝝓 𝒙

Valid kernel: Necessary & sufficient conditions

74

 Gram matrix 𝑲𝑁×𝑁: 𝐾𝑖𝑗 = 𝑘(𝒙(𝑖), 𝒙(𝑗))

 Restricting the kernel function to a set of points {𝒙 1 , 𝒙 2 , … , 𝒙(𝑁)}

𝐾 =
𝑘(𝒙(1), 𝒙(1)) ⋯ 𝑘(𝒙(1), 𝒙(𝑁))

⋮ ⋱ ⋮
𝑘(𝒙(𝑁), 𝒙(1)) ⋯ 𝑘(𝒙(𝑁), 𝒙(𝑁))

 Mercer Theorem: The kernel matrix is Symmetric Positive

Semi-Definite (for any choice of data points)

 Any symmetric positive definite matrix can be regarded as a kernel

matrix, that is as an inner product matrix in some space

[Shawe-Taylor & Cristianini 2004]

Extending linear methods to kernelized ones

75

 Kernelized version of linear methods

 Linear methods are famous

 Unique optimal solutions, faster learning algorithms, and better analysis

 However, we often require nonlinear methods in real-world problems

and so we can use kernel-based version of these linear algorithms

 Replacing inner products with kernels in linear algorithms ⇒
very flexible methods

 We can operate in the mapped space without ever computing the

coordinates of the data in that space

Example: kernelized minimum distance

classifier

76

 If 𝒙 − 𝝁1 < 𝒙 − 𝝁2 then assign 𝒙 to 𝒞1

𝒙 − 𝝁1
𝑇 𝒙 − 𝝁1 < 𝒙 − 𝝁2

𝑇 𝒙 − 𝝁2

−2𝒙𝑇𝝁1 + 𝝁1
𝑇𝝁1 < −2𝒙𝑇𝝁2 + 𝝁2

𝑇𝝁2

−2

𝑦 𝑛 =1
𝒙𝑇𝒙 𝑛

𝑁1
+

𝑦 𝑛 =1

𝑦 𝑚 =1

𝒙 𝑛 𝑇
𝒙 𝑚

𝑁1 × 𝑁1
< −2

𝑦 𝑛 =2

𝒙𝑇𝒙 𝑛

𝑁2
+

𝑦 𝑛 =2

𝑦 𝑚 =2

𝒙 𝑛 𝑇
𝒙 𝑚

𝑁2 × 𝑁2

−2

𝑦 𝑛 =1
𝐾 𝒙, 𝒙 𝑛

𝑁1
+

𝑦 𝑛 =1

𝑦 𝑚 =1

𝐾 𝒙 𝑛 , 𝒙 𝑚

𝑁1 × 𝑁1
< −2

𝑦 𝑛 =2

𝐾 𝒙, 𝒙 𝑛

𝑁2
+

𝑦 𝑛 =2

𝑦 𝑚 =2

𝐾 𝒙 𝑛 , 𝒙 𝑚

𝑁2 × 𝑁2

Which information can be obtained from kernel?

77

 Example: we know all pairwise distances

 𝑑 𝝓 𝒙 ,𝝓 𝒛
2

= 𝝓 𝒙 − 𝝓 𝒛 2 = 𝑘 𝒙, 𝒙 + 𝑘 𝒛, 𝒛 − 2𝑘(𝒙, 𝒛)

 Therefore, we also know distance of points from center of mass of a set

 Many dimensionality reduction, clustering, and classification

methods can be described according to pairwise distances.

 This allow us to introduce kernelized versions of them

Example: Kernel ridge regression

78

min
𝒘

𝑛=1

𝑁

𝒘𝑇𝒙 𝑛 − 𝑦 𝑛 2
+ 𝜆𝒘𝑇𝒘

𝑛=1

𝑁

2𝒙 𝑛 𝒘𝑇𝒙 𝑛 − 𝑦 𝑛 + 2𝜆𝒘 ⇒ 𝒘 =

𝑛=1

𝑁

𝛼𝑛𝒙 𝑛

𝛼𝑛 = −
1

𝜆
𝒘𝑇𝒙 𝑛 − 𝑦 𝑛

Example: Kernel ridge regression (Cont’d)

79

min
𝒘

𝑛=1

𝑁

𝒘𝑇𝜙 𝒙 𝑛 − 𝑦 𝑛 2
+ 𝜆𝒘𝑇𝒘

 Dual representation:

𝐽 𝜶 = 𝜶𝑇𝚽𝚽𝑇𝚽𝚽𝑇𝜶 − 2𝜶𝑇𝚽𝚽𝑇𝒚 + 𝒚𝑇𝒚 + 𝜆𝜶𝑇𝚽𝚽𝑇𝜶

𝐽 𝜶 = 𝜶𝑇𝑲𝑲𝜶 − 2𝜶𝑇𝑲𝒚 + 𝒚𝑇𝒚 + 𝜆𝜶𝑇𝑲𝜶

𝛻𝜶𝐽 𝜶 = 𝟎 ⇒ 𝜶 = 𝑲 + 𝜆𝑰𝑁
−1𝒚

𝒘 =

𝑛=1

𝑁

𝛼𝑛𝜙 𝒙 𝑛

Example: Kernel ridge regression (Cont’d)

80

 Prediction for new 𝒙:

𝑓 𝒙 = 𝒘𝑇𝜙 𝒙

= 𝜶𝑇𝚽𝜙 𝒙

=
𝐾(𝒙(1), 𝒙)

⋮
𝐾(𝒙(𝑁), 𝒙)

𝑇

𝑲 + 𝜆𝑰𝑁
−1𝒚

𝒘 = 𝚽𝑇𝜶

Kernels for structured data

81

 Kernels also can be defined on general types of data

 Kernel functions do not need to be defined over vectors

 just we need a symmetric positive definite matrix

 Thus, many algorithms can work with general (non-vectorial)

data

 Kernels exist to embed strings, trees, graphs, …

 This may be more important than nonlinearity

 kernel-based version of classical learning algorithms for recognition

of structured data

Kernel function for objects

82

 Sets: Example of kernel function for sets:

𝑘 𝐴, 𝐵 = 2 𝐴∩𝐵

 Strings: The inner product of the feature vectors for two

strings can be defined as

 e.g. sum over all common subsequences weighted according to

their frequency of occurrence and lengths

A E G A T E A G G

E G T E A G A E G A T G

Kernel trick advantages: summary

83

 Operating in the mapped space without ever computing the

coordinates of the data in that space

 Besides vectors, we can introduce kernel functions for

structured data (graphs, strings, etc.)

 Much of the geometry of the data in the embedding space is

contained in all pairwise dot products

 In many cases, inner product in the embedding space can be

computed efficiently.

Resources

84

 C. Bishop, “Pattern Recognition and Machine Learning”,

Chapter 6.1-6.2, 7.1.

 Yaser S. Abu-Mostafa, et al., “Learning from Data”, Chapter

8.

