Support Vector Machine (SVM) and Kernel Methods

CE-717: Machine Learning Sharif University of Technology
Fall 2016

Soleymani

Outline

- Margin concept
- Hard-Margin SVM
- Soft-Margin SVM
- Dual Problems of Hard-Margin SVM and Soft-Margin SVM
- Nonlinear SVM
- Kernel trick
- Kernel methods

Margin

- Which line is better to select as the boundary to provide more generalization capability?

Larger margin provides better generalization to unseen data

- Margin for a hyperplane that separates samples of two linearly separable classes is:
- The smallest distance between the decision boundary and any of the training samples

What is better linear separation

- Linearly separable data

Which line is better?

Why the bigger margin?

Maximum margin

- SVM finds the solution with maximum margin
- Solution: a hyperplane that is farthest from all training samples

- The hyperplane with the largest margin has equal distances to the nearest sample of both classes

Finding \boldsymbol{w} with large margin

- Two preliminaries:
- Pull out w_{0}
v \boldsymbol{w} is $\left[w_{1}, \ldots, w_{d}\right]$

$$
\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=0 \quad \text { We have no } x_{0}
$$

- Normalize \boldsymbol{w}, w_{0}
- Let $\boldsymbol{x}^{(n)}$ be the nearest point to the plane
, $\left|\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right|=1$

Distance between an $\boldsymbol{x}^{(n)}$ and the plane

$$
\text { distance }=\frac{\left|\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right|}{\|\boldsymbol{w}\|}
$$

The optimization problem

$$
\max _{w, w_{0}} \frac{2}{\|w\|} \quad \begin{aligned}
& \text { From all the hyperplanes } \\
& \text { that correctly classify data }
\end{aligned}
$$

s. t. $\min _{n=1, \ldots, N}\left|w^{T} \boldsymbol{x}^{(n)}+w_{0}\right|=1$

Notice: $\left|w^{T} \boldsymbol{x}^{(n)}+w_{0}\right|=y^{(n)}\left(w^{T} \boldsymbol{x}^{(n)}+w_{0}\right)$

$$
\min _{w, w_{0}} \frac{1}{2}\|w\|^{2}
$$

s.t. $\quad y^{(n)}\left(w^{T} \boldsymbol{x}^{(n)}+w_{0}\right) \geq 1 \quad n=1, \ldots, N$

Hard-margin SVM: Optimization problem

$$
\begin{gathered}
\max _{\boldsymbol{w}, w_{0}} \frac{2}{\|\boldsymbol{w}\|} \\
\text { s.t. }\left|\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right| \geq 1, n=1, \ldots, N
\end{gathered}
$$

Margin: $\frac{2}{\|\boldsymbol{w}\|}$

Hard-margin SVM: Optimization problem

$$
\begin{gathered}
\max _{\boldsymbol{w}, w_{0}} \frac{2}{\|\boldsymbol{w}\|} \\
\text { s.t. }\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right) \geq 1 \quad \forall y^{(n)}=1 \\
\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right) \leq-1 \quad \forall y^{(n)}=-1
\end{gathered}
$$

$$
\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}=0
$$

Margin: $\frac{2}{\|\boldsymbol{w}\|}$

Hard-margin SVM: Optimization problem

We can equivalently optimize:

$$
\begin{array}{cc}
\min _{\boldsymbol{w}, w_{0}} \frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w} \\
\text { s.t. } \quad y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right) \geq 1 \quad n=1, \ldots, N
\end{array}
$$

- It is a convex Quadratic Programming (QP) problem
> There are computationally efficient packages to solve it.
- It has a global minimum (if any).

Quadratic programming

$$
\begin{gathered}
\min _{\boldsymbol{x}} \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } \quad \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
\boldsymbol{E x}=\boldsymbol{d}
\end{gathered}
$$

Dual formulation of the SVM

- We are going to introduce the dual SVM problem which is equivalent to the original primal problem. The dual problem:
- is often easier
- gives us further insights into the optimal hyperplane
- enable us to exploit the kernel trick

Optimization: Lagrangian multipliers

$$
\begin{gathered}
p^{*}=\min _{x} f(\boldsymbol{x}) \\
\text { s.t. } g_{i}(\boldsymbol{x}) \leq 0 \quad i=1, \ldots, m \\
h_{i}(\boldsymbol{x})=0 \quad i=1, \ldots, p \\
\mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \lambda)=f(\boldsymbol{x})+\sum_{i=1}^{m} \propto_{i} g_{i}(\boldsymbol{x})+\sum_{i=1}^{p} \lambda_{i} h_{i}(\boldsymbol{x}) \\
\max _{\left\{\alpha_{i} \geq 0\right\},\left\{\lambda_{i}\right\}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \lambda)= \begin{cases}\infty & \text { any } g_{i}(\boldsymbol{x})>0 \\
\infty & \text { any } h_{i}(\boldsymbol{x}) \neq 0 \\
f(\boldsymbol{x}) & \text { otherwise }\end{cases} \\
p^{*}=\min _{\boldsymbol{x}} \max _{\left\{\alpha_{i} \geq 0\right\},\left\{\lambda_{i}\right\}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \lambda) \quad \begin{array}{c}
\boldsymbol{\alpha}=\left[\alpha_{1}, \ldots, \alpha_{m}\right] \\
\lambda=\left[\lambda_{1}, \ldots, \lambda_{p}\right]
\end{array}
\end{gathered}
$$

Optimization: Dual problem

- In general, we have:

$$
\max _{x} \min _{y} h(x, y) \leq \min _{y} \max _{x} h(x, y)
$$

- Primal problem: $p^{*}=\min _{\boldsymbol{x}} \max _{\left\{\alpha_{i} \geq 0\right\},\left(\lambda_{i}\right\}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\lambda})$
- Dual problem: $d^{*}=\max _{\left\{\alpha_{i} \geq 0\right\},\left\{\lambda_{i}\right\}} \min _{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}, \boldsymbol{\lambda})$
- Obtained by swapping the order of min and max
- $d^{*} \leq p^{*}$
- When the original problem is convex (f and g are convex functions and h is affine), we have strong duality $d^{*}=p^{*}$

Hard-margin SVM: Dual problem

$$
\min _{w, w_{0}} \frac{1}{2}\|w\|^{2}
$$

$$
\text { s.t. } \quad y^{(i)}\left(w^{T} \boldsymbol{x}^{(i)}+w_{0}\right) \geq 1 \quad i=1, \ldots, N
$$

- By incorporating the constraints through lagrangian multipliers, we will have:

$$
\min _{w, w_{0}} \max _{\left\{\alpha_{n} \geq 0\right\}}\left\{\frac{1}{2}\|\boldsymbol{w}\|^{2}+\sum_{n=1}^{N} \alpha_{n}\left(1-y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)\right)\right\}
$$

- Dual problem (changing the order of min and max in the above problem):

$$
\max _{\left\{\alpha_{n} \geq 0\right\}} \min _{w, w_{0}}\left\{\frac{1}{2}\|w\|^{2}+\sum_{n=1}^{N} \alpha_{n}\left(1-y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)\right)\right\}
$$

Hard-margin SVM: Dual problem

$$
\begin{aligned}
& \max _{\left\{\alpha_{n} \geq 0\right\}} \min _{w, w_{0}} \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\alpha}\right) \\
& \mathcal{L}\left(w, w_{0}, \boldsymbol{\alpha}\right)=\frac{1}{2}\|w\|^{2}+\sum_{n=1}^{N} \alpha_{n}\left(1-y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)\right) \\
& \nabla_{w} \mathcal{L}\left(w, w_{0}, \boldsymbol{\alpha}\right)=0 \Rightarrow w-\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)}=\mathbf{0} \\
& \Rightarrow w=\sum_{n=1}^{N} \alpha_{n} y^{(n)} x^{(n)} \\
& \frac{\partial \mathcal{L}\left(\boldsymbol{w}, w_{0}, \boldsymbol{\alpha}\right)}{\partial w_{0}}=0 \Rightarrow-\underbrace{\sum_{n=1}^{N} \alpha_{n} y^{(n)}=0} \\
& w_{0} \text { do not appear, instead, a "global" constraint } \\
& \text { on } \boldsymbol{\alpha} \text { is created. }
\end{aligned}
$$

Substituting

$$
w=\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)} \quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0
$$

In the Largrangian

$$
\mathcal{L}\left(w, w_{0}, \alpha\right)=\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w}+\sum_{n=1}^{N} \alpha_{n}\left(1-y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)\right)
$$

Substituting

$$
w=\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)} \quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0
$$

In the Largrangian

$$
\mathcal{L}\left(w, w_{0}, \alpha\right)=\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w}+\sum_{n=1}^{N} \alpha_{n}\left(-y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)\right)
$$

We get

$$
\mathcal{L}\left(w, w_{0}, \alpha\right)=\sum_{n=1}^{N} \alpha_{n}
$$

Substituting

$$
\boldsymbol{w}=\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)} \quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0
$$

In the Largrangian

$$
\mathcal{L}\left(w, w_{0}, \alpha\right)=\frac{1}{2} \boldsymbol{w}^{T} w+\sum_{n=1}^{N} \alpha_{n}\left(-y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)} \quad\right)\right)
$$

We get

$$
\mathcal{L}\left(w, w_{0}, \alpha\right)=\sum_{n=1}^{N} \alpha_{n}
$$

Substituting

$$
w=\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)} \quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0
$$

In the Largrangian

$$
\mathcal{L}\left(w, w_{0}, \alpha\right)=\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w}+\sum_{n=1}^{N} \alpha_{n}\left(-y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)} \quad\right)\right)
$$

We get

$$
\mathcal{L}(\alpha)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^{T}} \boldsymbol{x}^{(m)}
$$

Maximize w.r.t. α subject to $\alpha_{n} \geq 0$ for $n=1, \ldots, N$ and $\sum_{n=1}^{N} \alpha_{n} y^{(n)}=0$

Hard-margin SVM: Dual problem

$$
\begin{gathered}
\max _{\alpha}\left\{\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^{T}} \boldsymbol{x}^{(m)}\right\} \\
\text { Subject to } \quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0 \\
\alpha_{n} \geq 0 \quad n=1, \ldots, N
\end{gathered}
$$

- It is a convex QP

Solution

- Quadratic programming:

$$
\begin{gathered}
\min _{\alpha} \frac{1}{2} \alpha^{T}\left[\begin{array}{ccc}
y^{(1)} y^{(1)} \boldsymbol{x}^{(1)^{T}} \boldsymbol{x}^{(1)} & \cdots & y^{(1)} y^{(N)} \boldsymbol{x}^{(1)^{T}} \boldsymbol{x}^{(N)} \\
\vdots & \ddots & \vdots \\
y^{(N)} y^{(1)} \boldsymbol{x}^{(N)^{T}} \boldsymbol{x}^{(1)} & \cdots & y^{(N)} y^{(N)} \boldsymbol{x}^{(N)^{T}} \boldsymbol{x}^{(N)}
\end{array}\right] \alpha+(\mathbf{1})^{T} \alpha \\
\text { s.t. }-\alpha \leq \mathbf{0} \\
\boldsymbol{y}^{T} \alpha=\mathbf{0}
\end{gathered}
$$

Finding the hyperplane

- After finding α by QP, we find w :

$$
\boldsymbol{w}=\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)}
$$

- How to find w_{0} ?
b we discuss it after introducing support vectors

Karush-Kuhn-Tucker (KKT) conditions

- Necessary conditions for the solution $\left[w^{*}, w_{0}^{*}, \alpha^{*}\right]$:

$$
\begin{aligned}
& \left.\nabla_{\boldsymbol{w}} \mathcal{L}\left(w, w_{0}, \alpha\right)\right|_{w^{*}, w_{0}^{*}, \alpha^{*}}=0 \\
& \left.\frac{\partial \mathcal{L}\left(w, w_{0}, \alpha\right)}{\partial w_{0}}\right|_{w^{*}, w_{0}^{*}, \alpha^{*}}=0 \\
& \alpha_{n}^{*} \geq 0 \quad n=1, \ldots, N \\
& y^{(n)}\left(w^{* T} \boldsymbol{x}^{(n)}+w_{0}^{*}\right) \geq 1 \quad n=1, \ldots, N \\
& \alpha_{i}^{*}\left(1-y^{(n)}\left(w^{* T} \boldsymbol{x}^{(n)}+w_{0}^{*}\right)\right)=0 \quad n=1, \ldots, N
\end{aligned}
$$

$\min _{x} f(x)$
s.t. $g_{i}(\boldsymbol{x}) \leq 0 \quad i=1, \ldots, m$
$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha})=f(\boldsymbol{x})+\left.\sum \alpha_{i} g_{i}(\boldsymbol{x}) \nabla_{x} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha})\right|_{\boldsymbol{x}^{*}, \boldsymbol{\alpha}^{*}}=0$
In general, the optimal $\boldsymbol{x}^{*}, \boldsymbol{\alpha}^{*}$ satisfies KKT conditions:

$$
\begin{aligned}
& \alpha_{i}^{*} \geq 0 \quad i=1, \ldots, m \\
& g_{i}\left(\boldsymbol{x}^{*}\right) \leq 0 \quad i=1, \ldots, m \\
& \alpha_{i}^{*} g_{i}\left(\boldsymbol{x}^{*}\right)=0 \quad i=1, \ldots, m
\end{aligned}
$$

Karush-Kuhn-Tucker (KKT) conditions

[wikipedia]

Hard-margin SVM: Support vectors

- Inactive constraint: $y^{(n)}\left(w^{T} \boldsymbol{x}^{(n)}+w_{0}\right)>1$
$\Rightarrow \Rightarrow \alpha_{n}=0$ and thus $\boldsymbol{x}^{(n)}$ is not a support vector.
- Active constraint: $y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)=1$
$\Rightarrow \Rightarrow \alpha_{n}$ can be greater than 0 and thus $\boldsymbol{x}^{(i)}$ can be a support vector.

Hard-margin SVM: Support vectors

- Inactive constraint: $y^{(n)}\left(w^{T} \boldsymbol{x}^{(n)}+w_{0}\right)>1$
$\Rightarrow \Rightarrow \alpha_{n}=0$ and thus $\boldsymbol{x}^{(n)}$ is not a support vector.
- Active constraint: $y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)=1$

A sample with $\alpha_{n}=0$ can also lie on one of the margin hyperplanes

Hard-margin SVM: Support vectors

- Support Vectors (SVs) $=\left\{\boldsymbol{x}^{(n)} \mid \alpha_{n}>0\right\}$

The direction of hyper-plane can be found only based on support vectors:

$$
\boldsymbol{w}=\sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)}
$$

Finding the hyperplane

- After finding α by QP, we find w :

$$
\boldsymbol{w}=\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)}
$$

- How to find w_{0} ?
- Each of the samples that has $\alpha_{S}>0$ is on the margin, thus we solve for w_{0} using any of SVs:

$$
\begin{gathered}
\left|\boldsymbol{w}^{T} \boldsymbol{x}^{(s)}+w_{0}\right|=1 \\
y^{(s)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(s)}+w_{0}\right)=1 \\
\Rightarrow w_{0}=y^{(s)}-\boldsymbol{w}^{T} \boldsymbol{x}^{(s)}
\end{gathered}
$$

Hard-margin SVM: Dual problem Classifying new samples using only SVs

- Classification of a new sample \boldsymbol{x} :

$$
\begin{gathered}
\hat{y}=\operatorname{sign}\left(w_{0}+\boldsymbol{w}^{T} \boldsymbol{x}\right) \\
\hat{y}=\operatorname{sign}\left(w_{0}+\left(\sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)}\right)^{T} \boldsymbol{x}\right) \\
\hat{y}=\operatorname{sign}\left(y^{(s)}-\sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)^{T}} x^{(s)}+\sum_{\substack{\text { Support vectors are sufficient to } \\
\text { predict labels of new samples }}} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)^{T}} \boldsymbol{x}\right)
\end{gathered}
$$

The classifier is based on the expansion in terms of dot products of \boldsymbol{x} with support vectors.

Hard-margin SVM: Dual problem

$$
\max _{\boldsymbol{\alpha}}\left\{\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y^{(n)} y^{(m)} x^{(n)^{T}} x^{(m)}\right\}
$$

Subject to $\quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0$

$$
\alpha_{n} \geq 0 \quad n=1, \ldots, N
$$

- Only the dot product of each pair of training data appears in the optimization problem
- An important property that is helpful to extend to non-linear SVM

In the transformed space

$$
\max _{\boldsymbol{\alpha}}\left\{\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y^{(n)} y^{(m)} \phi\left(x^{(n)}\right)^{T} \phi\left(x^{(m)}\right)\right\}
$$

Subject to $\quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0$

$$
\alpha_{n} \geq 0 \quad n=1, \ldots, N
$$

Beyond linear separability

- When training samples are not linearly separable, it has no solution.
- How to extend it to find a solution even though the classes are not exactly linearly separable.

Beyond linear separability

- How to extend the hard-margin SVM to allow classification error
- Overlapping classes that can be approximately separated by a linear boundary
- Noise in the linearly separable classes

Beyond linear separability: Soft-margin SVM

- Minimizing the number of misclassified points?!
- NP-complete
- Soft margin:
- Maximizing a margin while trying to minimize the distance between misclassified points and their correct margin plane

Error measure

- Margin violation amount $\xi_{n}\left(\xi_{n} \geq 0\right)$:
, $y^{(n)}\left(\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}^{(n)}+w_{0}\right) \geq 1-\xi_{n}$
- Total violation: $\sum_{n=1}^{N} \xi_{n}$

Soft-margin SVM: Optimization problem

- SVM with slack variables: allows samples to fall within the margin, but penalizes them

$$
\min _{\boldsymbol{w}, w_{0}, \xi_{n} n_{n=1}^{N}} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}
$$

s. t. $\quad y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right) \geq 1-\xi_{n} \quad n=1, \ldots, N$

$$
\xi_{n} \geq 0
$$

ξ_{n} : slack variables
$0<\xi_{n}<1$: if $\boldsymbol{x}^{(n)}$ is correctly classified but inside margin
$\xi_{n}>1$: if $\boldsymbol{x}^{(n)}$ is misclassifed

Soft-margin SVM

- linear penalty (hinge loss) for a sample if it is misclassified or lied in the margin
- tries to maintain ξ_{n} small while maximizing the margin.
always finds a solution (as opposed to hard-margin SVM)
- more robust to the outliers
- Soft margin problem is still a convex QP

Soft-margin SVM: Parameter C

- C is a tradeoff parameter:
b small C allows margin constraints to be easily ignored
- large margin
- large C makes constraints hard to ignore
- narrow margin
- $C \rightarrow \infty$ enforces all constraints: hard margin
- C can be determined using a technique like crossvalidation

Soft-margin SVM: Cost function

$$
\begin{gathered}
\min _{w, w_{0},\left\{\xi_{n}\right\}_{n=1}^{N}} \frac{1}{2}\|w\|^{2}+C \sum_{n=1}^{N} \xi_{n} \\
\text { s.t. } y^{(n)}\left(w^{T} \boldsymbol{x}^{(n)}+w_{0}\right) \geq 1-\xi_{n} n=1, \ldots, N \\
\xi_{n} \geq 0
\end{gathered}
$$

- It is equivalent to the unconstrained optimization problem:

$$
\min _{w, w_{0}} \frac{1}{2}\|w\|^{2}+C \sum_{n=1}^{N} \max \left(0,1-y^{(n)}\left(w^{T} \boldsymbol{x}^{(n)}+w_{0}\right)\right)
$$

SVM loss function

- Hinge loss vs. 0-I loss

Lagrange formulation

$$
\begin{aligned}
& \mathcal{L}\left(\boldsymbol{w}, w_{0}, \xi, \boldsymbol{\alpha}, \boldsymbol{\beta}\right) \\
& =\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \\
& +\sum_{n=1}^{N} \alpha_{n}\left(1-\xi_{n}-y^{(n)}\left(\boldsymbol{w}^{\boldsymbol{T}} \boldsymbol{x}^{(n)}+w_{0}\right)\right)-\sum_{n=1}^{N} \beta_{n} \xi_{n}
\end{aligned}
$$

- Minimize w.r.t. $\boldsymbol{w}, w_{0}, \xi$ and maximize w.r.t. $\alpha_{n} \geq 0$ and β_{n} ≥ 0

$$
\begin{gathered}
\min _{\boldsymbol{w}_{0}, \xi_{3} n_{n=1}^{N}} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n} \\
\text { s.t. } \quad y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right) \geq 1-\xi_{n} \quad n=1, \ldots, N \\
\xi_{n} \geq 0
\end{gathered}
$$

Lagrange formulation

$$
\mathcal{L}\left(\boldsymbol{w}, w_{0}, \xi, \boldsymbol{\alpha}, \beta\right)=\frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}+\sum_{n=1}^{N} \alpha_{n}(1
$$

Soft-margin SVM: Dual problem

$$
\begin{gathered}
\max _{\boldsymbol{\alpha}}\left\{\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^{T}} \boldsymbol{x}^{(m)}\right\} \\
\text { Subject to } \quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0 \\
0 \leq \alpha_{n} \leq C \quad n=1, \ldots, N
\end{gathered}
$$

- After solving the above quadratic problem, \boldsymbol{w} is find as:

$$
\boldsymbol{w}=\sum_{n=1}^{N} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)}
$$

Soft-margin SVM: Support vectors

- Support Vectors: $\alpha_{n}>0$
- If $0<\alpha_{n}<C$ (margin support vector) \quad SVs on the margin

$$
y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)=1 \quad\left(\xi_{n}=0\right)
$$

- If $\alpha=C$ (non-margin support vector)

SVs on or over the margin

$$
y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}+w_{0}\right)<1 \quad\left(\xi_{n}>0\right)
$$

$$
C-\alpha_{n}-\beta_{n}=0
$$

SVM: Summary

- Hard margin: maximizing margin
- Soft margin: handling noisy data and overlapping classes
- Slack variables in the problem
- Dual problems of hard-margin and soft-margin SVM
- Classifier decision in terms of support vectors
- Dual problems lead us to non-linear SVM method easily by kernel substitution

Not linearly separable data

- Noisy data or overlapping classes (we discussed about it: soft margin)
- Near linearly separable

Non-linear decision surface

- Transform to a new feature space

Nonlinear SVM

- Assume a transformation $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$ on the feature space

$$
x \rightarrow \phi(x)
$$

$$
\begin{aligned}
& \boldsymbol{\phi}(\boldsymbol{x})=\left[\phi_{1}(\boldsymbol{x}), \ldots, \phi_{m}(\boldsymbol{x})\right] \\
& \left\{\phi_{1}(\boldsymbol{x}), \ldots, \phi_{m}(\boldsymbol{x})\right\}: \text { set of basis functions (or features) } \\
& \phi_{i}(\boldsymbol{x}): \mathbb{R}^{d} \rightarrow \mathbb{R}
\end{aligned}
$$

- Find a hyper-plane in the transformed feature space:

Soft-margin SVM in a transformed space: Primal problem

- Primal problem:

$$
\min _{\boldsymbol{w}, w_{0}} \frac{1}{2}\|\boldsymbol{w}\|^{2}+C \sum_{n=1}^{N} \xi_{n}
$$

s. t. $\quad y^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{(n)}\right)+w_{0}\right) \geq 1-\xi_{n} \quad n=1, \ldots, N$

$$
\xi_{n} \geq 0
$$

b $\boldsymbol{w} \in \mathbb{R}^{m}$: the weights that must be found

- If $m \gg d$ (very high dimensional feature space) then there are many more parameters to learn

Soft-margin SVM in a transformed space: Dual problem

- Optimization problem:

$$
\begin{gathered}
\max _{\boldsymbol{\alpha}}\left\{\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y^{(n)} y^{(m)} \boldsymbol{\phi}\left(x^{(n)}\right)^{T} \boldsymbol{\phi}\left(x^{(m)}\right)\right\} \\
\text { Subject to } \quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0 \\
0 \leq \alpha_{n} \leq C \quad n=1, \ldots, N
\end{gathered}
$$

- If we have inner products $\boldsymbol{\phi}\left(\boldsymbol{x}^{(i)}\right)^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{(j)}\right)$, only $\boldsymbol{\alpha}$ $=\left[\alpha_{1}, \ldots, \alpha_{N}\right]$ needs to be learnt.
> not necessary to learn m parameters as opposed to the primal problem

Classifying a new data

$$
\begin{gathered}
\hat{y}=\operatorname{sign}\left(w_{0}+\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x})\right) \\
\text { where } \boldsymbol{w}=\sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{\phi}\left(\boldsymbol{x}^{(n)}\right) \\
\text { and } w_{0}=y^{(s)}-\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{(s)}\right)
\end{gathered}
$$

Kernel SVM

- Learns linear decision boundary in a high dimension space without explicitly working on the mapped data

Let $\boldsymbol{\phi}(\boldsymbol{x})^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)=K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ (kernel)

- Example: $\boldsymbol{x}=\left[x_{1}, x_{2}\right]$ and second-order $\boldsymbol{\phi}$:

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right]
$$

$K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$
$=1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime}$

Kernel trick

- Compute $K\left(x, x^{\prime}\right)$ without transforming \boldsymbol{x} and \boldsymbol{x}^{\prime}
- Example: Consider $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(1+\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}\right)^{2}$

$$
\begin{gathered}
=\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2} \\
=1+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{1}^{\prime} x_{2} x_{2}^{\prime}
\end{gathered}
$$

This is an inner product in:

$$
\begin{aligned}
\boldsymbol{\phi}(\boldsymbol{x}) & =\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right] \\
\boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right) & =\left[1, \sqrt{2} x_{1}^{\prime}, \sqrt{2} x_{2}^{\prime}, x_{1}^{\prime 2}, x_{2}^{\prime 2}, \sqrt{2} x_{1}^{\prime} x_{2}^{\prime}\right]
\end{aligned}
$$

Polynomial kernel: Degree two

-We instead use $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}+1\right)^{2}$ that corresponds to:

$$
\begin{aligned}
& d \text {-dimensional feature space } \boldsymbol{x}=\left[x_{1}, \ldots, x_{d}\right]^{T} \\
& \boldsymbol{\phi}(\boldsymbol{x}) \\
& =\left[1, \sqrt{2} x_{1}, \ldots, \sqrt{2} x_{d}, x_{1}^{2}, \ldots, x_{d}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{1} x_{d}, \sqrt{2} x_{2} x_{3}, \ldots, \sqrt{2} x_{d-1} x_{d}\right]^{T}
\end{aligned}
$$

Polynomial kernel

- This can similarly be generalized to d-dimensioan \boldsymbol{x} and ϕ s are polynomials of order M :

$$
\begin{aligned}
K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) & =\left(1+\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}\right)^{M} \\
& =\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+\cdots+x_{d} x_{d}^{\prime}\right)^{M}
\end{aligned}
$$

- Example: SVM boundary for a polynomial kernel

$$
\begin{aligned}
& w_{0}+\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x})=0 \\
& \Rightarrow w_{0}+\sum_{\alpha_{i}>0} \alpha_{i} y^{(i)} \boldsymbol{\phi}\left(\boldsymbol{x}^{(i)}\right)^{T} \boldsymbol{\phi}(\boldsymbol{x})=0 \\
& \Rightarrow w_{0}+\sum_{\alpha_{i}>0} \alpha_{i} y^{(i)} k\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}\right)=0
\end{aligned}
$$

$$
\Rightarrow w_{0}+\sum_{\alpha_{i}>0} \alpha_{i} y^{(i)}\left(1+\boldsymbol{x}^{(i)^{T}} \boldsymbol{x}\right)^{M}=0 \longmapsto \begin{aligned}
& \text { Boundary is a } \\
& \text { polynomial of order } M
\end{aligned}
$$

Why kernel?

- kernel functions K can indeed be efficiently computed, with a cost proportional to d (the dimensionality of the input) instead of m.
- Example: consider the second-order polynomial transform:

$$
\begin{gather*}
\boldsymbol{\phi}(\boldsymbol{x})=\left[1, x_{1}, \ldots, x_{d}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{d} x_{d}\right]^{T}
\end{gather*} \quad m=1+d+d^{2}
$$

Gaussian or RBF kernel

- If $K\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is an inner product in some transformed space of \boldsymbol{x}, it is good
$K\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{\gamma}\right)$
- Take one dimensional case with $\gamma=1$:

$$
\begin{aligned}
& K\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2}\right) \\
= & \exp \left(-x^{2}\right) \exp \left(-x^{\prime 2}\right) \exp \left(2 x x^{\prime}\right) \\
= & \exp \left(-x^{2}\right) \exp \left(-x^{\prime 2}\right) \sum_{k=1}^{\infty} \frac{2^{k} x^{k} x^{\prime k}}{k!}
\end{aligned}
$$

Some common kernel functions

- Linear: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}$
- Polynomial: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}+1\right)^{M}$
-Gaussian: $k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{\gamma}\right)$
- Sigmoid: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\tanh \left(a \boldsymbol{x}^{T} \boldsymbol{x}^{\prime}+b\right)$

Kernel formulation of SVM

- Optimization problem:

$$
\max _{\alpha}\left\{\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y^{(n)} y^{(m)} \quad k\left(x^{(n)}, x^{(m)}\right)\right\}
$$

Subject to $\quad \sum_{n=1}^{N} \alpha_{n} y^{(n)}=0$

$$
0 \leq \alpha_{n} \leq C \quad n=1, \ldots, N
$$

$$
\boldsymbol{Q}=\left[\begin{array}{ccc}
y^{(1)} y^{(1)} K\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}\right) & \cdots & y^{(1)} y^{(N)} K\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(1)}\right) \\
\vdots & \ddots & \vdots \\
y^{(N)} y^{(1)} K\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(1)}\right) & \cdots & y^{(N)} y^{(N)} K\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(N)}\right)
\end{array}\right]
$$

Classifying a new data

$$
\left.\begin{array}{c}
\hat{\boldsymbol{y}}=\operatorname{sign}\left(w_{0}+\boldsymbol{w}^{T} \boldsymbol{\phi}(x)\right) \\
\text { where } \boldsymbol{w}=\sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{\phi}\left(\boldsymbol{x}^{(n)}\right) \\
\text { and } w_{0}=y^{(s)}-\boldsymbol{w}^{T} \boldsymbol{\phi}\left(\boldsymbol{x}^{(s)}\right) \\
\hat{y}=\operatorname{sign}\left(w_{0}+\sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \quad k\left(\boldsymbol{x}^{(n)}, \boldsymbol{x}\right)\right.
\end{array}\right) .
$$

Gaussian kernel

- Example: SVM boundary for a gaussian kernel
- Considers a Gaussian function around each data point.
- $w_{0}+\sum_{\alpha_{i}>0} \alpha_{i} y^{(i)} \exp \left(-\frac{\left\|x-x^{(i)}\right\|^{2}}{\sigma}\right)=0$
- SVM + Gaussian Kernel can classify any arbitrary training set
- Training error is zero when $\sigma \rightarrow 0$
\square All samples become support vectors (likely overfiting)

Hard margin Example

$\exp \left(-1\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)$

$\exp \left(-10\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)$

$\exp \left(-100\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)$

- For narrow Gaussian (large σ), even the protection of a large margin cannot suppress overfitting.

SVM Gaussian kernel: Example

This example has been adopted from Zisserman's slides

SVM Gaussian kernel: Example

This example has been adopted from Zisserman's slides

SVM Gaussian kernel: Example

$\sigma=1.0 \quad C=100$

This example has been adopted from Zisserman's slides

SVM Gaussian kernel: Example

$\sigma=1.0 \quad C=10$

This example has been adopted from Zisserman's slides

SVM Gaussian kernel: Example

$\sigma=1.0 \quad C=\infty$

This example has been adopted from Zisserman's slides

SVM Gaussian kernel: Example

$\sigma=0.25 \quad C=\infty$

This example has been adopted from Zisserman's slides

SVM Gaussian kernel: Example

$\sigma=0.1 \quad C=\infty$

This example has been adopted from Zisserman's slides

Kernel trick: Idea

- Kernel trick \rightarrow Extension of many well-known algorithms to kernel-based ones
- By substituting the dot product with the kernel function
- $k\left(x, x^{\prime}\right)=\boldsymbol{\phi}(x)^{T} \boldsymbol{\phi}\left(x^{\prime}\right)$
- $k\left(x, x^{\prime}\right)$ shows the dot product of x and x^{\prime} in the transformed space.
- Idea: when the input vectors appears only in the form of dot products, we can use kernel trick
- Solving the problem without explicitly mapping the data
- Explicit mapping is expensive if $\boldsymbol{\phi}(\boldsymbol{x})$ is very high dimensional

Kernel trick: Idea (Cont'd)

- Instead of using a mapping $\phi: \mathcal{X} \leftarrow \mathcal{F}$ to represent $x \in \mathcal{X}$ by $\boldsymbol{\phi}(\boldsymbol{x}) \in \mathcal{F}$, a similarity function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is used.
- We specify only an inner product function between points in the transformed space (not their coordinates)
- In many cases, the inner product in the embedding space can be computed efficiently.

Constructing kernels

- Construct kernel functions directly
- Ensure that it is a valid kernel
- Corresponds to an inner product in some feature space.
- Example: $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{\prime}\right)^{2}$

Corresponding mapping: $\boldsymbol{\phi}(\boldsymbol{x})=\left[x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right]^{T}$ for \boldsymbol{x} $=\left[x_{1}, x_{2}\right]^{T}$

- We need a way to test whether a kernel is valid without having to construct $\boldsymbol{\phi}(\boldsymbol{x})$

Valid kernel: Necessary \& sufficient conditions

- Gram matrix $K_{N \times N}: K_{i j}=k\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)}\right)$
- Restricting the kernel function to a set of points $\left\{\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \ldots, \boldsymbol{x}^{(N)}\right\}$

$$
K=\left[\begin{array}{ccc}
k\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}\right) & \cdots & k\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(N)}\right) \\
\vdots & \ddots & \vdots \\
k\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(1)}\right) & \cdots & k\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(N)}\right)
\end{array}\right]
$$

- Mercer Theorem: The kernel matrix is Symmetric Positive Semi-Definite (for any choice of data points)
- Any symmetric positive definite matrix can be regarded as a kernel matrix, that is as an inner product matrix in some space

Extending linear methods to kernelized ones

- Kernelized version of linear methods
- Linear methods are famous
- Unique optimal solutions, faster learning algorithms, and better analysis
- However, we often require nonlinear methods in real-world problems and so we can use kernel-based version of these linear algorithms
- Replacing inner products with kernels in linear algorithms \Rightarrow very flexible methods
- We can operate in the mapped space without ever computing the coordinates of the data in that space

Example: kernelized minimum distance classifier

- If $\left\|\boldsymbol{x}-\boldsymbol{\mu}_{1}\right\|<\left\|\boldsymbol{x}-\boldsymbol{\mu}_{2}\right\|$ then assign \boldsymbol{x} to \mathcal{C}_{1}

$$
\begin{gathered}
\left(\boldsymbol{x}-\boldsymbol{\mu}_{1}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{\mu}_{1}\right)<\left(\boldsymbol{x}-\boldsymbol{\mu}_{2}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{\mu}_{2}\right) \\
-2 \boldsymbol{x}^{T} \boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{1}^{T} \boldsymbol{\mu}_{1}<-2 \boldsymbol{x}^{T} \boldsymbol{\mu}_{2}+\boldsymbol{\mu}_{2}^{T} \boldsymbol{\mu}_{2}
\end{gathered}
$$

$-2 \frac{\sum_{y^{(n)=1}} x^{T} x^{(n)}}{N_{1}}+\frac{\sum_{y^{(n)=1}} \sum_{y^{(m)=1}} x^{(n)^{T}} x^{(m)}}{N_{1} \times N_{1}}<-2 \frac{\sum_{y^{(n)=2}} x^{T} x^{(n)}}{N_{2}}+\frac{\sum_{y^{(n)=2}} \sum_{y^{(m)=2}} x^{(n)^{T}} x^{(m)}}{N_{2} \times N_{2}}$
$-2 \frac{\sum_{y^{(n)}=1} K\left(x, x^{(n)}\right)}{N_{1}}+\frac{\sum_{y^{(n)=1}} \sum_{y^{(m)=1}} K\left(x^{(n)}, x^{(m)}\right)}{N_{1} \times N_{1}}<-2 \frac{\sum_{y^{(n)=2}} K\left(x, x^{(n)}\right)}{N_{2}}+\frac{\sum_{y^{(n)}=2} \sum_{y^{(m)}=2} K\left(x^{(n)}, x^{(m)}\right)}{N_{2} \times N_{2}}$

Which information can be obtained from kernel?

- Example: we know all pairwise distances
$d(\boldsymbol{\phi}(\boldsymbol{x}), \boldsymbol{\phi}(\mathbf{z}))^{2}=\|\boldsymbol{\phi}(\boldsymbol{x})-\boldsymbol{\phi}(\mathbf{z})\|^{2}=k(\boldsymbol{x}, \boldsymbol{x})+k(\mathbf{z}, \mathbf{z})-2 k(\boldsymbol{x}, \mathbf{z})$
- Therefore, we also know distance of points from center of mass of a set
- Many dimensionality reduction, clustering, and classification methods can be described according to pairwise distances.
b This allow us to introduce kernelized versions of them

Example: Kernel ridge regression

$$
\begin{array}{r}
\min _{\boldsymbol{w}} \sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}-y^{(n)}\right)^{2}+\lambda \boldsymbol{w}^{T} \boldsymbol{w} \\
\sum_{n=1}^{N} 2 \boldsymbol{x}^{(n)}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}-y^{(n)}\right)+2 \lambda \boldsymbol{w} \Rightarrow \boldsymbol{w}=\sum_{n=1}^{N} \alpha_{n} \boldsymbol{x}^{(n)} \\
\alpha_{n}=-\frac{1}{\lambda}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}-y^{(n)}\right)
\end{array}
$$

Example: Kernel ridge regression (Cont'd)

$$
\min _{w} \sum_{n=1}^{N}\left(w^{T} \phi\left(x^{(n)}\right)-y^{(n)}\right)^{2}+\lambda w^{T} w
$$

- Dual representation:

$$
w=\sum_{n=1}^{N} \alpha_{n} \phi\left(\boldsymbol{x}^{(n)}\right)
$$

$$
J(\alpha)=\alpha^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \alpha-2 \alpha^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \boldsymbol{y}+\boldsymbol{y}^{T} \boldsymbol{y}+\lambda \alpha^{T} \boldsymbol{\Phi} \boldsymbol{\Phi}^{T} \alpha
$$

$$
J(\alpha)=\alpha^{T} \boldsymbol{K} \boldsymbol{K} \alpha-2 \alpha^{T} \boldsymbol{K} \boldsymbol{y}+\boldsymbol{y}^{T} \boldsymbol{y}+\lambda \alpha^{T} \boldsymbol{K} \alpha
$$

$$
\nabla_{\alpha} J(\alpha)=\mathbf{0} \Rightarrow \alpha=\left(\boldsymbol{K}+\lambda \boldsymbol{I}_{N}\right)^{-1} \boldsymbol{y}
$$

Example: Kernel ridge regression (Cont'd)

- Prediction for new \boldsymbol{x} :

$$
\begin{gathered}
f(\boldsymbol{x})=\boldsymbol{w}^{T} \phi(\boldsymbol{x}) \quad \boldsymbol{w}=\boldsymbol{\Phi}^{T} \boldsymbol{\alpha} \\
=\boldsymbol{\alpha}^{T} \boldsymbol{\Phi} \phi(\boldsymbol{x}) \\
=\left[\begin{array}{c}
K\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}\right) \\
\vdots \\
K\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}\right)
\end{array}\right]^{T}\left(\boldsymbol{K}+\lambda \boldsymbol{I}_{N}\right)^{-1} \boldsymbol{y}
\end{gathered}
$$

Kernels for structured data

- Kernels also can be defined on general types of data
- Kernel functions do not need to be defined over vectors
- just we need a symmetric positive definite matrix
- Thus, many algorithms can work with general (non-vectorial) data
- Kernels exist to embed strings, trees, graphs, ...
- This may be more important than nonlinearity
b kernel-based version of classical learning algorithms for recognition of structured data

Kernel function for objects

- Sets: Example of kernel function for sets:

$$
k(A, B)=2^{|A \cap B|}
$$

- Strings: The inner product of the feature vectors for two strings can be defined as
b e.g. sum over all common subsequences weighted according to their frequency of occurrence and lengths

A	E	G	A	T	E	A	G	G

E	G	T	E	A	G	A	E	G	A	T	G

Kernel trick advantages: summary

- Operating in the mapped space without ever computing the coordinates of the data in that space
- Besides vectors, we can introduce kernel functions for structured data (graphs, strings, etc.)
- Much of the geometry of the data in the embedding space is contained in all pairwise dot products
- In many cases, inner product in the embedding space can be computed efficiently.

Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 6.I-6.2, 7.I.
- Yaser S. Abu-Mostafa, et al., "Learning from Data", Chapter 8.

