Support Vector Machine (SVM) and Kernel Methods

CE-717: Machine Learning Sharif University of Technology Fall 2016

Soleymani

Outline

- Margin concept
- Hard-Margin SVM
- Soft-Margin SVM
- Dual Problems of Hard-Margin SVM and Soft-Margin SVM
- Nonlinear SVM
 - Kernel trick
- Kernel methods

Margin

Which line is better to select as the boundary to provide more generalization capability?

Larger margin provides better generalization to unseen data

- Margin for a hyperplane that separates samples of two linearly separable classes is:
 - The smallest distance between the decision boundary and any of the training samples

What is better linear separation

Linearly separable data

Which line is better?

Why the bigger margin?

Maximum margin

- SVM finds the solution with maximum margin
 - Solution: a hyperplane that is farthest from all training samples

The hyperplane with the largest margin has equal distances to the nearest sample of both classes

Finding *w* with large margin

- Two preliminaries:
 - **Pull out** W_0
 - **w** is $[w_1, ..., w_d]$

$$\boldsymbol{w}^T \boldsymbol{x} + w_0 = 0$$
 We have no x_0

- Normalize w, w_0
 - Let $x^{(n)}$ be the nearest point to the plane
 - $|\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0| = 1$

Distance between an $x^{(n)}$ and the plane

distance =
$$\frac{|\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0|}{\|\boldsymbol{w}\|}$$

The optimization problem

$$\max_{\substack{w,w_0}} \frac{2}{\|w\|}$$
From all the hyperplanes
that correctly classify data
s. t.
$$\min_{n=1,...,N} |w^T x^{(n)} + w_0| = 1$$

Notice:
$$|w^T x^{(n)} + w_0| = y^{(n)} (w^T x^{(n)} + w_0)$$

$$\min_{\boldsymbol{w}, w_0} \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y^{(n)} (\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0) \ge 1$ $n = 1, ..., N$

Hard-margin SVM: Optimization problem

$$\max_{\boldsymbol{w}, w_0} \frac{2}{\|\boldsymbol{w}\|}$$

s.t. $|\boldsymbol{w}^T \boldsymbol{x}^{(n)} + w_0| \ge 1$, $n = 1, ..., N$

Hard-margin SVM: Optimization problem

$$\max_{\boldsymbol{w}, \boldsymbol{w}_0} \frac{2}{\|\boldsymbol{w}\|}$$

s.t. $(\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0) \ge 1 \quad \forall y^{(n)} = 1$
 $(\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0) \le -1 \quad \forall y^{(n)} = -1$

Hard-margin SVM: Optimization problem

We can equivalently optimize:

$$\min_{\boldsymbol{w}, w_0} \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} \\
\text{s.t.} \quad y^{(n)} (\boldsymbol{w}^T \boldsymbol{x}^{(n)} + w_0) \ge 1 \quad n = 1, \dots, N$$

It is a convex Quadratic Programming (QP) problem

- There are computationally efficient packages to solve it.
- It has a <u>global</u> minimum (if any).

Quadratic programming

$$\min_{x} \frac{1}{2} x^{T} Q x + c^{T} x$$

s.t. $Ax \le b$
 $Ex = d$

Dual formulation of the SVM

- We are going to introduce the dual SVM problem which is equivalent to the original primal problem. The dual problem:
 - is often easier
 - gives us further insights into the optimal hyperplane
 - enable us to exploit the kernel trick

Optimization: Lagrangian multipliers

$$p^* = \min_{\mathbf{x}} f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0$ $i = 1, ..., m$
 $h_i(\mathbf{x}) = 0$ $i = 1, ..., p$ Lagrangian multipliers
 $\mathcal{L}(\mathbf{x}, \alpha, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \alpha_i g_i(\mathbf{x}) + \sum_{i=1}^{p} \lambda_i h_i(\mathbf{x})$
$$\max_{\{\alpha_i \ge 0\}, \{\lambda_i\}} \mathcal{L}(\mathbf{x}, \alpha, \lambda) = \begin{cases} \infty & \text{any } g_i(\mathbf{x}) > 0\\ \infty & \text{any } h_i(\mathbf{x}) \neq 0\\ f(\mathbf{x}) & \text{otherwise} \end{cases}$$
$$p^* = \min_{\mathbf{x}} \max_{\{\alpha_i \ge 0\}, \{\lambda_i\}} \mathcal{L}(\mathbf{x}, \alpha, \lambda) \qquad \alpha = [\alpha_1, ..., \alpha_m] \\ \lambda = [\lambda_1, ..., \lambda_p] \end{cases}$$

Optimization: Dual problem

In general, we have:

$$\max_{x} \min_{y} h(x, y) \le \min_{y} \max_{x} h(x, y)$$

- **Primal problem**: $p^* = \min_{x} \max_{\{\alpha_i \ge 0\}, \{\lambda_i\}} \mathcal{L}(x, \alpha, \lambda)$
- **Dual problem**: $d^* = \max_{\{\alpha_i \ge 0\}, \{\lambda_i\}} \min_x \mathcal{L}(x, \alpha, \lambda)$
 - Obtained by swapping the order of min and max
 - $d^* \leq p^*$
- When the original problem is convex (f and g are convex functions and h is affine), we have strong duality $d^* = p^*$

Hard-margin SVM: Dual problem

$$\min_{\boldsymbol{w}, w_0} \frac{1}{2} \|\boldsymbol{w}\|^2$$

s.t. $y^{(i)} (\boldsymbol{w}^T \boldsymbol{x}^{(i)} + \boldsymbol{w}_0) \ge 1$ $i = 1, ..., N$

By incorporating the constraints through lagrangian multipliers, we will have:

$$\min_{\boldsymbol{w},\boldsymbol{w}_{0}} \max_{\{\alpha_{n}\geq 0\}} \left\{ \frac{1}{2} \|\boldsymbol{w}\|^{2} + \sum_{n=1}^{N} \alpha_{n} (1 - y^{(n)} (\boldsymbol{w}^{T} \boldsymbol{x}^{(n)} + \boldsymbol{w}_{0})) \right\}$$

Dual problem (changing the order of min and max in the above problem):

$$\max_{\{\alpha_n \ge 0\}} \min_{\mathbf{w}, w_0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0)) \right\}$$

Hard-margin SVM: Dual problem

 $\max_{\{\alpha_n \ge 0\}} \min_{\boldsymbol{w}, \boldsymbol{w}_0} \mathcal{L}(\boldsymbol{w}, \boldsymbol{w}_0, \boldsymbol{\alpha})$

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0))$$

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}, w_0, \boldsymbol{\alpha}) = 0 \Rightarrow \mathbf{w} - \sum_{n=1}^N \alpha_n y^{(n)} \mathbf{x}^{(n)} = \mathbf{0}$$
$$\Rightarrow \mathbf{w} = \sum_{n=1}^N \alpha_n y^{(n)} \mathbf{x}^{(n)}$$

$$\frac{\partial \mathcal{L}(w, w_0, \alpha)}{\partial w_0} = 0 \Rightarrow -\sum_{n=1}^N \alpha_n y^{(n)} = 0$$

$$w_0 \text{ do not appear, instead, a "global" constraint on α is created.$$

$$w = \sum_{n=1}^{N} \alpha_n y^{(n)} x^{(n)}$$
 $\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$

In the Largrangian

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{w}_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \sum_{n=1}^{N} \alpha_n (1 - y^{(n)} (\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0))$$

$$w = \sum_{n=1}^{N} \alpha_n y^{(n)} x^{(n)}$$
 $\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$

In the Largrangian

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{w}_{0}, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{w} + \sum_{n=1}^{N} \alpha_{n} (-y^{(n)} (\boldsymbol{w}^{T} \boldsymbol{x}^{(n)} + \boldsymbol{w}_{0}))$$

We get

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\alpha}) = \sum_{n=1}^N \alpha_n$$

$$w = \sum_{n=1}^{N} \alpha_n y^{(n)} x^{(n)}$$
 $\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$

In the Largrangian

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{w}_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \sum_{n=1}^{N} \alpha_n (-y^{(n)} (\boldsymbol{w}^T \boldsymbol{x}^{(n)}))$$

We get

$$\mathcal{L}(\mathbf{w}, \mathbf{w}_0, \boldsymbol{\alpha}) = \sum_{n=1}^N \alpha_n$$

$$w = \sum_{n=1}^{N} \alpha_n y^{(n)} x^{(n)}$$
 $\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$

In the Largrangian

$$\mathcal{L}(\boldsymbol{w}, \boldsymbol{w}_0, \boldsymbol{\alpha}) = \frac{1}{2} \boldsymbol{w}^T \boldsymbol{w} + \sum_{n=1}^{N} \alpha_n (-y^{(n)} (\boldsymbol{w}^T \boldsymbol{x}^{(n)}))$$

We get

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^T} \boldsymbol{x}^{(m)}$$

Maximize w.r.t. α subject to $\alpha_n \ge 0$ for n = 1, ..., N and $\sum_{n=1}^N \alpha_n y^{(n)} = 0$

Hard-margin SVM: Dual problem

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} x^{(n)^T} x^{(m)} \right\}$$

Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$
$$\alpha_n \ge 0 \quad n = 1, \dots, N$$

It is a convex QP

Solution

Quadratic programming:

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \boldsymbol{\alpha}^{T} \begin{bmatrix} y^{(1)} y^{(1)} \boldsymbol{x}^{(1)^{T}} \boldsymbol{x}^{(1)} & \cdots & y^{(1)} y^{(N)} \boldsymbol{x}^{(1)^{T}} \boldsymbol{x}^{(N)} \\ \vdots & \ddots & \vdots \\ y^{(N)} y^{(1)} \boldsymbol{x}^{(N)^{T}} \boldsymbol{x}^{(1)} & \cdots & y^{(N)} y^{(N)} \boldsymbol{x}^{(N)^{T}} \boldsymbol{x}^{(N)} \end{bmatrix} \boldsymbol{\alpha} + (-1)^{T} \boldsymbol{\alpha}$$

s.t. $-\boldsymbol{\alpha} \leq \mathbf{0}$
 $y^{T} \boldsymbol{\alpha} = \mathbf{0}$

Finding the hyperplane

• After finding α by QP, we find w:

$$\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)}$$

- How to find w_0 ?
 - we discuss it after introducing support vectors

Karush-Kuhn-Tucker (KKT) conditions

• Necessary conditions for the solution $[w^*, w_0^*, \alpha^*]$:

$$\nabla_{w} \mathcal{L}(w, w_{0}, \alpha)|_{w^{*}, w_{0}^{*}, \alpha^{*}} = 0$$

$$\frac{\partial \mathcal{L}(w, w_{0}, \alpha)}{\partial w_{0}}|_{w^{*}, w_{0}^{*}, \alpha^{*}} = 0$$

$$\alpha_{n}^{*} \geq 0 \quad n = 1, ..., N$$

$$y^{(n)}(w^{*T}x^{(n)} + w_{0}^{*}) \geq 1 \quad n = 1, ..., N$$

$$\alpha_{i}^{*}\left(1 - y^{(n)}(w^{*T}x^{(n)} + w_{0}^{*})\right) = 0 \quad n = 1, ..., N$$

$$\min_{x} f(x)$$

s.t. $g_i(x) \le 0$ $i = 1, ..., m$

 $\mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}) = f(\boldsymbol{x}) + \sum \alpha_i g_i(\boldsymbol{x}) \quad \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\alpha}) \Big|_{\boldsymbol{x}^*, \boldsymbol{\alpha}^*} = 0$ In general, the optimal $\boldsymbol{x}^*, \boldsymbol{\alpha}^*$ satisfies KKT conditions: $\alpha_i^* \geq 0 \quad i = 1, \dots, m$ $g_i(\boldsymbol{x}^*) \leq 0 \quad i = 1, \dots, m$ $\alpha_i^* g_i(\boldsymbol{x}^*) = 0 \quad i = 1, \dots, m$

Karush-Kuhn-Tucker (KKT) conditions

[wikipedia]

Hard-margin SVM: Support vectors

- Inactive constraint: $y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0) > 1$
 - $\Rightarrow \alpha_n = 0$ and thus $x^{(n)}$ is not a support vector.
- Active constraint: $y^{(n)}(w^T x^{(n)} + w_0) = 1$
 - $\Rightarrow \alpha_n$ can be greater than 0 and thus $x^{(i)}$ can be a support vector.

Hard-margin SVM: Support vectors

• Inactive constraint: $y^{(n)}(w^T x^{(n)} + w_0) > 1$

- $\Rightarrow \alpha_n = 0$ and thus $x^{(n)}$ is not a support vector.
- Active constraint: $y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + \mathbf{w}_0) = 1$

Hard-margin SVM: Support vectors

• Support Vectors (SVs)= $\{x^{(n)} | \alpha_n > 0\}$

The direction of hyper-plane can be found only based on support vectors:

Finding the hyperplane

• After finding α by QP, we find w:

$$\boldsymbol{w} = \sum_{n=1}^{N} \alpha_n y^{(n)} \boldsymbol{x}^{(n)}$$

- How to find w_0 ?
 - Each of the samples that has $\alpha_s > 0$ is on the margin, thus we solve for w_0 using any of SVs:

$$|\mathbf{w}^T \mathbf{x}^{(s)} + \mathbf{w}_0| = 1$$
$$y^{(s)} (\mathbf{w}^T \mathbf{x}^{(s)} + \mathbf{w}_0) = 1$$
$$\Rightarrow \mathbf{w}_0 = y^{(s)} - \mathbf{w}^T \mathbf{x}^{(s)}$$

Hard-margin SVM: Dual problem Classifying new samples using only SVs

Classification of a new sample x:

$$\hat{y} = \operatorname{sign}(\boldsymbol{w}_{0} + \boldsymbol{w}^{T}\boldsymbol{x})$$

$$\hat{y} = \operatorname{sign}\left(\boldsymbol{w}_{0} + \left(\sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)}\right)^{T} \boldsymbol{x}\right)$$

$$\hat{y} = \operatorname{sign}(\underline{y^{(s)}} - \sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)^{T}} \boldsymbol{x}^{(s)} + \sum_{\alpha_{n}>0} \alpha_{n} y^{(n)} \boldsymbol{x}^{(n)^{T}} \boldsymbol{x})$$
Support vectors are sufficient to predict labels of new samples

The classifier is based on the expansion in terms of dot products of x with support vectors. Hard-margin SVM: Dual problem

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^T} \boldsymbol{x}^{(m)} \right\}$$

Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$
$$\alpha_n \ge 0 \quad n = 1, \dots, N$$

- Only the dot product of each pair of training data appears in the optimization problem
 - An important property that is helpful to extend to non-linear SVM

In the transformed space

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \phi(\boldsymbol{x}^{(n)})^T \phi(\boldsymbol{x}^{(m)}) \right\}$$

Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$
$$\alpha_n \ge 0 \quad n = 1, \dots, N$$

Beyond linear separability

- When training samples are not linearly separable, it has no solution.
- How to extend it to find a solution even though the classes are not exactly linearly separable.

Beyond linear separability

- How to extend the hard-margin SVM to allow classification error
 - Overlapping classes that can be approximately separated by a linear boundary
 - Noise in the linearly separable classes

Beyond linear separability: Soft-margin SVM

- Minimizing the number of misclassified points?!
 - NP-complete
- Soft margin:
 - Maximizing a margin while trying to minimize the distance between misclassified points and their correct margin plane

Error measure

Margin violation amount \$\xi_n\$ (\$\xi_n \ge 0\$):
\$y^{(n)}(w^T x^{(n)} + w_0) \ge 1 - \$\xi_n\$

• Total violation: $\sum_{n=1}^{N} \xi_n$

Soft-margin SVM: Optimization problem

SVM with slack variables: allows samples to fall within the margin, but penalizes them

$$\min_{\substack{w,w_0,\{\xi_n\}_{n=1}^N\\n}} \frac{1}{2} \|w\|^2 + C \sum_{n=1}^N \xi_n$$
s.t. $y^{(n)} (w^T x^{(n)} + w_0) \ge 1 - \xi_n \quad n = 1, ..., N$
 $\xi_n \ge 0$

38

ξ_n : **slack** variables

N T

 $0 < \xi_n < 1$: if $x^{(n)}$ is correctly classified but inside margin

 $\xi_n > 1$: if $x^{(n)}$ is misclassifed

Soft-margin SVM

- Inear penalty (hinge loss) for a sample if it is misclassified or lied in the margin
 - tries to maintain ξ_n small while maximizing the margin.
 - always finds a solution (as opposed to hard-margin SVM)
 - more robust to the outliers
- Soft margin problem is still a convex QP

Soft-margin SVM: Parameter C

- C is a tradeoff parameter:
 - \blacktriangleright small C allows margin constraints to be easily ignored
 - large margin
 - large C makes constraints hard to ignore
 - harrow margin
- $C \rightarrow \infty$ enforces all constraints: hard margin
- C can be determined using a technique like crossvalidation

Soft-margin SVM: Cost function

$$\min_{\substack{\boldsymbol{w}, \boldsymbol{w}_0, \{\xi_n\}_{n=1}^N \\ n \neq n}} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{n=1}^N \xi_n$$
s.t. $y^{(n)} (\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0) \ge 1 - \xi_n \quad n = 1, ..., N$
 $\xi_n \ge 0$

N 7

It is equivalent to the unconstrained optimization problem:

$$\min_{\boldsymbol{w}, w_0} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{n=1}^N \max(0, 1 - y^{(n)}(\boldsymbol{w}^T \boldsymbol{x}^{(n)} + \boldsymbol{w}_0))$$

SVM loss function

Hinge loss vs. 0-1 loss

Lagrange formulation

$$\mathcal{L}(\boldsymbol{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{n=1}^{N} \boldsymbol{\xi}_n + \sum_{n=1}^{N} \alpha_n (1 - \boldsymbol{\xi}_n - y^{(n)} (\boldsymbol{w}^T \boldsymbol{x}^{(n)} + w_0)) - \sum_{n=1}^{N} \beta_n \boldsymbol{\xi}_n$$

Minimize w.r.t. w, w_0, ξ and maximize w.r.t. $\alpha_n \ge 0$ and $\beta_n \ge 0$ $\min_{\substack{w,w_0, \{\xi_n\}_{n=1}^N}} \frac{1}{2} \|w\|^2 + C \sum_{j=1}^N \xi_n$

s.t.
$$y^{(n)} (\mathbf{w}^T \mathbf{x}^{(n)} + w_0) \ge 1 - \frac{\xi_n}{\xi_n}$$
 $n = 1, ..., N$
 $\xi_n \ge 0$

Lagrange formulation

 $\mathcal{L}(\boldsymbol{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{n=1}^{N} \boldsymbol{\xi}_n + \sum_{n=1}^{N} \alpha_n (1)$

Soft-margin SVM: Dual problem

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \boldsymbol{x}^{(n)^T} \boldsymbol{x}^{(m)} \right\}$$

Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$
$$0 \le \alpha_n \le C \quad n = 1, \dots, N$$

• After solving the above quadratic problem, w is find as: $w = \sum_{n=1}^{N} \alpha_n y^{(n)} x^{(n)}$

Soft-margin SVM: Support vectors

- Support Vectors: $\alpha_n > 0$
 - If $0 < \alpha_n < C$ (margin support vector) SVs on the margin

$$y^{(n)}(\mathbf{w}^T \mathbf{x}^{(n)} + w_0) = 1$$
 $(\xi_n = 0)$

• If $\alpha = C$ (non-margin support vector) SVs on or over the margin

$$y^{(n)}(w^T x^{(n)} + w_0) < 1$$
 $(\xi_n > 0)$

 $C-\alpha_n-\beta_n=0$

SVM: Summary

- Hard margin: maximizing margin
- Soft margin: handling noisy data and overlapping classes
 - Slack variables in the problem
- Dual problems of hard-margin and soft-margin SVM
 - Classifier decision in terms of support vectors
- Dual problems lead us to non-linear SVM method easily by kernel substitution

Not linearly separable data

- Noisy data or overlapping classes (we discussed about it: soft margin)
 - Near linearly separable

Non-linear decision surface
Transform to a new feature space

Nonlinear SVM

- Assume a transformation φ: ℝ^d → ℝ^m on the feature space
 x → φ(x)
 φ(x) = [φ₁(x),...,φ_m(x)] {φ₁(x),...,φ_m(x)}: set of basis functions (or features) φ_i(x): ℝ^d → ℝ
- Find a hyper-plane in the transformed feature space:

Soft-margin SVM in a transformed space: Primal problem

Primal problem:

$$\min_{\boldsymbol{w}, w_0} \frac{1}{2} \|\boldsymbol{w}\|^2 + C \sum_{n=1}^N \xi_n$$

s.t. $y^{(n)} (\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}^{(n)}) + w_0) \ge 1 - \xi_n \quad n = 1, ..., N$
 $\xi_n \ge 0$

- $w \in \mathbb{R}^m$: the weights that must be found
- If $m \gg d$ (very high dimensional feature space) then there are many more parameters to learn

Soft-margin SVM in a transformed space: Dual problem

Optimization problem:

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \boldsymbol{\phi}(\boldsymbol{x}^{(n)})^T \boldsymbol{\phi}(\boldsymbol{x}^{(m)}) \right\}$$

Subject to $\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$

$$0 \leq \alpha_n \leq C \ n = 1, \dots, N$$

- If we have inner products $\boldsymbol{\phi}(\boldsymbol{x}^{(i)})^T \boldsymbol{\phi}(\boldsymbol{x}^{(j)})$, only $\boldsymbol{\alpha} = [\alpha_1, \dots, \alpha_N]$ needs to be learnt.
 - \blacktriangleright not necessary to learn m parameters as opposed to the primal problem

Classifying a new data

$$\hat{y} = sign(w_0 + \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}))$$

where
$$\boldsymbol{w} = \sum_{\alpha_n > 0} \alpha_n y^{(n)} \boldsymbol{\phi}(\boldsymbol{x}^{(n)})$$

and
$$w_0 = y^{(s)} - w^T \phi(x^{(s)})$$

Kernel SVM

Learns linear decision boundary in a high dimension space without explicitly working on the mapped data

• Let
$$\boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{x}') = K(\boldsymbol{x}, \boldsymbol{x}')$$
 (kernel)

• Example:
$$\mathbf{x} = [x_1, x_2]$$
 and second-order $\boldsymbol{\phi}$:
 $\boldsymbol{\phi}(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1 x_2]$

$$K(\mathbf{x}, \mathbf{x}') = 1 + x_1 x_1' + x_2 x_2' + x_1^2 x_1'^2 + x_2^2 x_2'^2 + x_1 x_1' x_2 x_2'$$

Kernel trick

• Compute K(x, x') without transforming x and x'

• Example: Consider $K(x, x') = (1 + x^T x')^2$ = $(1 + x_1 x_1' + x_2 x_2')^2$ = $1 + 2x_1 x_1' + 2x_2 x_2' + x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_1' x_2 x_2'$

This is an inner product in:

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} 1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2 \end{bmatrix}$$
$$\boldsymbol{\phi}(\boldsymbol{x}') = \begin{bmatrix} 1, \sqrt{2}x_1', \sqrt{2}x_2', x_1'^2, x_2'^2, \sqrt{2}x_1'x_2' \end{bmatrix}$$

Polynomial kernel: Degree two

• We instead use $K(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + 1)^2$ that corresponds to:

d-dimensional feature space $\mathbf{x} = [x_1, \dots, x_d]^T$

$\boldsymbol{\phi}(\boldsymbol{x}) = \left[1, \sqrt{2}x_1, \dots, \sqrt{2}x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_1x_d, \sqrt{2}x_2x_3, \dots, \sqrt{2}x_{d-1}x_d\right]^T$

Polynomial kernel

• This can similarly be generalized to d-dimensioan x and ϕ s are polynomials of order M:

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^M$$

= $(1 + x_1 x_1' + x_2 x_2' + \dots + x_d x_d')^M$

Example: SVM boundary for a polynomial kernel

$$w_{0} + w^{T} \phi(x) = 0$$

$$\Rightarrow w_{0} + \sum_{\alpha_{i} > 0} \alpha_{i} y^{(i)} \phi(x^{(i)})^{T} \phi(x) = 0$$

$$\Rightarrow w_{0} + \sum_{\alpha_{i} > 0} \alpha_{i} y^{(i)} k(x^{(i)}, x) = 0$$

$$\Rightarrow w_{0} + \sum_{\alpha_{i} > 0} \alpha_{i} y^{(i)} (1 + x^{(i)^{T}} x)^{M} = 0 \implies \text{Boundary is a polynomial of order } M$$

Why kernel?

- kernel functions K can indeed be efficiently computed, with a cost proportional to d (the dimensionality of the input) instead of m.
- Example: consider the second-order polynomial transform:

$$\boldsymbol{\phi}(\boldsymbol{x}) = [1, x_1, \dots, x_d, x_1^2, x_1 x_2, \dots, x_d x_d]^T \quad m = 1 + d + d^2$$
$$\boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{x}') = 1 + \sum_{i=1}^d x_i x_i' + \sum_{i=1}^d \sum_{j=1}^d x_i x_j x_i' x_j' \qquad O(m)$$
$$\sum_{i=1}^d x_i x_i' \times \sum_{j=1}^d x_j x_j'$$

 $\phi(x)^T \phi(x') = 1 + (x^T x') + (x^T x')^2$ O(d)

Gaussian or RBF kernel

 If K(x, x') is an inner product in some transformed space of x, it is good

$$K(\boldsymbol{x}, \boldsymbol{x}') = \exp(-\frac{\|\boldsymbol{x}-\boldsymbol{x}'\|^2}{\gamma})$$

• Take one dimensional case with $\gamma = 1$: $K(x, x') = \exp(-(x - x')^2)$

$$= \exp(-x^{2}) \exp(-x^{2}) \exp(2xx^{\prime})$$
$$= \exp(-x^{2}) \exp(-x^{\prime 2}) \sum_{k=1}^{\infty} \frac{2^{k} x^{k} x^{\prime k}}{k!}$$

Some common kernel functions

- Linear: $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
- Polynomial: $k(x, x') = (x^T x' + 1)^M$

• Gaussian:
$$k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{\|\mathbf{x}-\mathbf{x}'\|^2}{\gamma})$$

Sigmoid: $k(\mathbf{x}, \mathbf{x}') = \tanh(a\mathbf{x}^T\mathbf{x}' + b)$

Kernel formulation of SVM

Optimization problem:

$$\max_{\alpha} \left\{ \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y^{(n)} y^{(m)} \quad k(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(m)}) \right\}$$

Subject to
$$\sum_{n=1}^{N} \alpha_n y^{(n)} = 0$$

$$0 \le \alpha_n \le C$$
 $n = 1, \dots, N$

$$\boldsymbol{Q} = \begin{bmatrix} y^{(1)}y^{(1)}K(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}) & \cdots & y^{(1)}y^{(N)}K(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(1)}) \\ \vdots & \ddots & \vdots \\ y^{(N)}y^{(1)}K(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(1)}) & \cdots & y^{(N)}y^{(N)}K(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(N)}) \end{bmatrix}$$

Classifying a new data

$$\hat{y} = sign(w_0 + \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}))$$
where $\boldsymbol{w} = \sum_{\alpha_n > 0} \alpha_n y^{(n)} \boldsymbol{\phi}(\boldsymbol{x}^{(n)})$
and $w_0 = y^{(s)} - \boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}^{(s)})$

$$\hat{y} = sign\left(w_0 + \sum_{\alpha_n > 0} \alpha_n y^{(n)} k(\boldsymbol{x}^{(n)}, \boldsymbol{x})\right)$$

$$w_0 = y^{(s)} - \sum_{\alpha_n > 0} \alpha_n y^{(n)} k(\boldsymbol{x}^{(n)}, \boldsymbol{x}^{(s)})$$

Gaussian kernel

- Example: SVM boundary for a gaussian kernel
 - Considers a Gaussian function around each data point.

•
$$w_0 + \sum_{\alpha_i > 0} \alpha_i y^{(i)} \exp(-\frac{\|x - x^{(i)}\|^2}{\sigma}) = 0$$

- SVM + Gaussian Kernel can classify any arbitrary training set
 - Training error is zero when $\sigma \rightarrow 0$
 - □ All samples become support vectors (likely overfiting)

Hard margin Example

For narrow Gaussian (large σ), even the protection of a large margin cannot suppress overfitting.

This example has been adopted from Zisserman's slides

64

This example has been adopted from Zisserman's slides

65

$\sigma = 1.0 \quad C = 100$

 $\sigma = 1.0 \quad C = 10$

61

This example has been adopted from Zisserman's slides

SVM Gaussian kernel: Example $\sigma = 1.0$ $C = \infty$

This example has been adopted from Zisserman's slides

$\sigma = 0.25$ $C = \infty$

69

 $\sigma = 0.1$ $C = \infty$

//

Kernel trick: Idea

- Kernel trick → Extension of many well-known algorithms to kernel-based ones
 - By substituting the dot product with the kernel function
 - $k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^T \boldsymbol{\phi}(\boldsymbol{x}')$
 - k(x, x') shows the dot product of x and x' in the transformed space.
- Idea: when the input vectors appears only in the form of dot products, we can use kernel trick
 - Solving the problem without explicitly mapping the data
 - Explicit mapping is expensive if $\phi(x)$ is very high dimensional

Kernel trick: Idea (Cont'd)

- Instead of using a mapping $\phi : \mathcal{X} \leftarrow \mathcal{F}$ to represent $x \in \mathcal{X}$ by $\phi(x) \in \mathcal{F}$, a similarity function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is used.
 - We specify only an inner product function between points in the transformed space (not their coordinates)
 - In many cases, the inner product in the embedding space can be computed efficiently.

Constructing kernels

- Construct kernel functions directly
 - Ensure that it is a valid kernel
 - Corresponds to an inner product in some feature space.
- Example: $k(x, x') = (x^T x')^2$
 - Corresponding mapping: $\boldsymbol{\phi}(\boldsymbol{x}) = \left[x_1^2, \sqrt{2}x_1x_2, x_2^2\right]^T$ for $\boldsymbol{x} = [x_1, x_2]^T$
- We need a way to test whether a kernel is valid without having to construct $\phi(x)$

Valid kernel: Necessary & sufficient conditions

• Gram matrix $K_{N \times N}$: $K_{ij} = k(x^{(i)}, x^{(j)})$ [Shawe-Taylor & Cristianini 2004]

• Restricting the kernel function to a set of points $\{x^{(1)}, x^{(2)}, ..., x^{(N)}\}$

$$K = \begin{bmatrix} k(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}) & \cdots & k(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(N)}) \\ \vdots & \ddots & \vdots \\ k(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(1)}) & \cdots & k(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(N)}) \end{bmatrix}$$

- Mercer Theorem: The kernel matrix is Symmetric Positive Semi-Definite (for any choice of data points)
 - Any symmetric positive definite matrix can be regarded as a kernel matrix, that is as an inner product matrix in some space

Extending linear methods to kernelized ones

- Kernelized version of linear methods
 - Linear methods are famous
 - Unique optimal solutions, faster learning algorithms, and better analysis
 - However, we often require nonlinear methods in real-world problems and so we can use kernel-based version of these linear algorithms
- ▶ Replacing inner products with kernels in linear algorithms ⇒ very flexible methods
 - We can operate in the mapped space without ever computing the coordinates of the data in that space

Example: kernelized minimum distance classifier

• If $\|x - \mu_1\| < \|x - \mu_2\|$ then assign x to \mathcal{C}_1

 $(x - \mu_1)^T (x - \mu_1) < (x - \mu_2)^T (x - \mu_2)$

$$-2\boldsymbol{x}^{T}\boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{1}^{T}\boldsymbol{\mu}_{1}<-2\boldsymbol{x}^{T}\boldsymbol{\mu}_{2}+\boldsymbol{\mu}_{2}^{T}\boldsymbol{\mu}_{2}$$

Which information can be obtained from kernel?

• Example: we know all pairwise distances

•
$$d(\phi(\mathbf{x}), \phi(\mathbf{z}))^2 = \|\phi(\mathbf{x}) - \phi(\mathbf{z})\|^2 = k(\mathbf{x}, \mathbf{x}) + k(\mathbf{z}, \mathbf{z}) - 2k(\mathbf{x}, \mathbf{z})$$

- > Therefore, we also know distance of points from center of mass of a set
- Many dimensionality reduction, clustering, and classification methods can be described according to pairwise distances.
 - This allow us to introduce kernelized versions of them

Example: Kernel ridge regression

$$\min_{\boldsymbol{w}} \sum_{n=1}^{N} \left(\boldsymbol{w}^T \boldsymbol{x}^{(n)} - \boldsymbol{y}^{(n)} \right)^2 + \lambda \boldsymbol{w}^T \boldsymbol{w}$$

$$\alpha_n = -\frac{1}{\lambda} \left(\boldsymbol{w}^T \boldsymbol{x}^{(n)} - \boldsymbol{y}^{(n)} \right)$$

Example: Kernel ridge regression (Cont'd)

$$\min_{\boldsymbol{w}} \sum_{n=1}^{N} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}^{(n)}) - \boldsymbol{y}^{(n)})^{2} + \lambda \boldsymbol{w}^{T} \boldsymbol{w}$$
$$\boldsymbol{w} = \sum_{n=1}^{N} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}^{(n)})$$

Dual representation:

 $J(\boldsymbol{\alpha}) = \boldsymbol{\alpha}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{\alpha} - 2\boldsymbol{\alpha}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y} + \lambda \boldsymbol{\alpha}^T \boldsymbol{\Phi} \boldsymbol{\Phi}^T \boldsymbol{\alpha}$

$$J(\boldsymbol{\alpha}) = \boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{K} \boldsymbol{\alpha} - 2\boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{y} + \boldsymbol{y}^T \boldsymbol{y} + \lambda \boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{\alpha}$$

$$\nabla_{\alpha} J(\alpha) = \mathbf{0} \Rightarrow \alpha = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{y}$$

Example: Kernel ridge regression (Cont'd)

Prediction for new x:

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) \qquad \mathbf{w} = \mathbf{\Phi}^T \boldsymbol{\alpha}$$

$$= \boldsymbol{\alpha}^{T} \boldsymbol{\Phi} \boldsymbol{\phi}(\boldsymbol{x})$$
$$= \begin{bmatrix} K(\boldsymbol{x}^{(1)}, \boldsymbol{x}) \\ \vdots \\ K(\boldsymbol{x}^{(N)}, \boldsymbol{x}) \end{bmatrix}^{T} (\boldsymbol{K} + \lambda \boldsymbol{I}_{N})^{-1} \boldsymbol{y}$$

Kernels for structured data

- Kernels also can be defined on general types of data
 - Kernel functions do not need to be defined over vectors
 - just we need a symmetric positive definite matrix
- Thus, many algorithms can work with general (non-vectorial) data
 - Kernels exist to embed strings, trees, graphs, ...
- This may be more important than nonlinearity
 - kernel-based version of classical learning algorithms for recognition of structured data

Kernel function for objects

Sets: Example of kernel function for sets:

 $k(A,B) = 2^{|A \cap B|}$

- Strings: The inner product of the feature vectors for two strings can be defined as
 - e.g. sum over all common subsequences weighted according to their frequency of occurrence and lengths

Kernel trick advantages: summary

- Operating in the mapped space without ever computing the coordinates of the data in that space
- Besides vectors, we can introduce kernel functions for structured data (graphs, strings, etc.)
- Much of the geometry of the data in the embedding space is contained in all pairwise dot products
- In many cases, inner product in the embedding space can be computed efficiently.

Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 6.1-6.2, 7.1.
- Yaser S. Abu-Mostafa, et al., "Learning from Data", Chapter
 8.